Оглавление
Изображения
Загрузить ваше изображение
DSS Images Other Images
Публикации по объекту
Abundances of Baade's Window Giants from Keck HIRES Spectra. I. Stellar Parameters and [Fe/H] Values We present the first results of a new abundance survey of the Milky Waybulge based on Keck HIRES spectra of 27 K giants in the Baade's Window(l=1deg, b=-4deg) field. The spectral data used inthis study are of much higher resolution and signal-to-noise ratio thanprevious optical studies of Galactic bulge stars. The [Fe/H] values ofour stars, which range between -1.29 and +0.51, were used to recalibratelarge low-resolution surveys of bulge stars. Our best value for the mean[Fe/H] of the bulge is -0.10+/-0.04. This mean value is similar to themean metallicity of the local disk and indicates that there cannot be astrong metallicity gradient inside the solar circle. The metallicitydistribution of stars confirms that the bulge does not suffer from theso-called G dwarf problem. This paper also details the new abundancetechniques necessary to analyze very metal-rich K giants, including anew Fe line list and regions of low blanketing for continuumidentification.Based on data obtained at the W. M. Keck Observatory, which is operatedas a scientific partnership among the California Institute ofTechnology, the University of California, and NASA and was made possibleby the generous financial support of the W. M. Keck Foundation.
| Spectral analysis of red clump giants and their use as standard candles in the wavebands I and K Using high resolution and high signal-to-noise ratio observational data,we determined the stellar atmospheric parameters of 19 metal-poor redclump giants and their chemical abundances of the four α elements(i.e., O, Mg, Ca, Si). We discuss the variations, with the ironabundance, of the atmospheric parameters and of the α elementsabundances. We examined the absolute stellar magnitudes of 58 red clumpgiants in the I and K wavebands as well as their relations with the ironabundance, and found that for the analysed range of iron abundance, thecorrelation with the iron abundance is weaker for the absolute magnitudein the K band than that in the I band, in agreement with theoreticalexpectations.
| Analysis of the Na, Mg, Al, and Si Abundances in the Atmospheres of Red Giants of Different Spectral Subgroups We analyze the Na, Mg, Al, and Si abundances in the atmospheres of morethan 40 stars, includingred giants of different spectral subgroups(normal red giants, mild and classical barium stars) and severalsupergiants. All these elements exhibit abundance excesses, with theoverabundance increasing with the star’s luminosity. Thedependence of the overabundances for each of these elements on theluminosity (or log g) is the same for all the spectral subgroups,testifying to a common origin: they are all products of hydrogen burningin the NeNa and MgAl cycles that have been dredged up from the stellarinteriors to the outer atmospheric layers by convection that graduallydevelops during the star’s evolution from the main sequence to thered-giant stage. The sodium abundances derived for several stars arelower than for other stars with similar atmospheric parameters. The agesand kinematic characteristics of these two groups of stars suggest thatthey probably belong to different stellar generations.
| Survey for Transiting Extrasolar Planets in Stellar Systems. II. Spectrophotometry and Metallicities of Open Clusters We present metallicity estimates for seven open clusters based onspectrophotometric indices from moderate-resolution spectroscopy.Observations of field giants of known metallicity provide a correlationbetween the spectroscopic indices and the metallicity of open clustergiants. We use χ2 analysis to fit the relation ofspectrophotometric indices to metallicity in field giants. The resultingfunction allows an estimate of the target-cluster giants' metallicitieswith an error in the method of +/-0.08 dex. We derive the followingmetallicities for the seven open clusters: NGC 1245, [M/H]=-0.14+/-0.04NGC 2099, [M/H]=+0.05+/-0.05 NGC 2324, [M/H]=-0.06+/-0.04 NGC 2539,[M/H]=-0.04+/-0.03 NGC 2682 (M67), [M/H]=-0.05+/-0.02 NGC 6705,[M/H]=+0.14+/-0.08 NGC 6819, [M/H]=-0.07+/-0.12. These metallicityestimates will be useful in planning future extrasolar planet transitsearches, since planets may form more readily in metal-richenvironments.
| Statistical Constraints for Astrometric Binaries with Nonlinear Motion Useful constraints on the orbits and mass ratios of astrometric binariesin the Hipparcos catalog are derived from the measured proper motiondifferences of Hipparcos and Tycho-2 (Δμ), accelerations ofproper motions (μ˙), and second derivatives of proper motions(μ̈). It is shown how, in some cases, statistical bounds can beestimated for the masses of the secondary components. Two catalogs ofastrometric binaries are generated, one of binaries with significantproper motion differences and the other of binaries with significantaccelerations of their proper motions. Mathematical relations betweenthe astrometric observables Δμ, μ˙, and μ̈ andthe orbital elements are derived in the appendices. We find a remarkabledifference between the distribution of spectral types of stars withlarge accelerations but small proper motion differences and that ofstars with large proper motion differences but insignificantaccelerations. The spectral type distribution for the former sample ofbinaries is the same as the general distribution of all stars in theHipparcos catalog, whereas the latter sample is clearly dominated bysolar-type stars, with an obvious dearth of blue stars. We point outthat the latter set includes mostly binaries with long periods (longerthan about 6 yr).
| Some processes of mixing in the atmospheres of cold giants. observed evidence of burning of hydrogen Some atmosphere parameters (Teff, lgg, [Fe/H], Vt)and the abundances of 21 elements for 19 giants of the disk aredetermined. The gravity is determined through three methods, namely, bycondition of ionization balance for atoms of iron, with the use ofparallaxes (and masses) and the adjustment of wings of the Ca I λ616.217 nm line. The abundances of the carbon, nitrogen and oxygen aredetermined from a molecular synthetic spectrum, the abundances of themagnesium and natrium are deduced in the assumption of NLTE, and theabundance of europium is determined from a sophisticated considerationof hyperfine structure. The study of the evidence of stellar evolutionand mixing in the stellar atmospheres is carried out. The average valuesfor the abundances of elements of the CNO-group are obtained. They pointto the underabundance of the carbon, overabundance of nitrogen and"normal" abundance of the oxygen, which is indicative of the reactionsof the CNO-cycle of hydrogen burning and subsequent transfer of theenriched material on a surface. A small surplus of the natrium and atrend of its abundance with lgg are found. A similar trend is revealedin the case of the nitrogen as well. This, probably, points to reactionsof burning of hydrogen also in NeNa-cycle where additional Ne can beobtained during a number of transformations from nitrogen.
| The Indo-US Library of Coudé Feed Stellar Spectra We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.
| Synthetic Lick Indices and Detection of α-enhanced Stars. II. F, G, and K Stars in the -1.0 < [Fe/H] < +0.50 Range We present an analysis of 402 F, G, and K solar neighborhood stars, withaccurate estimates of [Fe/H] in the range -1.0 to +0.5 dex, aimed at thedetection of α-enhanced stars and at the investigation of theirkinematical properties. The analysis is based on the comparison of 571sets of spectral indices in the Lick/IDS system, coming from fourdifferent observational data sets, with synthetic indices computed withsolar-scaled abundances and with α-element enhancement. We useselected combinations of indices to single out α-enhanced starswithout requiring previous knowledge of their main atmosphericparameters. By applying this approach to the total data set, we obtain alist of 60 bona fide α-enhanced stars and of 146 stars withsolar-scaled abundances. The properties of the detected α-enhancedand solar-scaled abundance stars with respect to their [Fe/H] values andkinematics are presented. A clear kinematic distinction betweensolar-scaled and α-enhanced stars was found, although a one-to-onecorrespondence to ``thin disk'' and ``thick disk'' components cannot besupported with the present data.
| Empirically Constrained Color-Temperature Relations. II. uvby A new grid of theoretical color indices for the Strömgren uvbyphotometric system has been derived from MARCS model atmospheres and SSGsynthetic spectra for cool dwarf and giant stars having-3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. Atwarmer temperatures (i.e., 8000-2.0. To overcome thisproblem, the theoretical indices at intermediate and high metallicitieshave been corrected using a set of color calibrations based on fieldstars having well-determined distances from Hipparcos, accurateTeff estimates from the infrared flux method, andspectroscopic [Fe/H] values. In contrast with Paper I, star clustersplayed only a minor role in this analysis in that they provided asupplementary constraint on the color corrections for cool dwarf starswith Teff<=5500 K. They were mainly used to test thecolor-Teff relations and, encouragingly, isochrones thatemploy the transformations derived in this study are able to reproducethe observed CMDs (involving u-v, v-b, and b-y colors) for a number ofopen and globular clusters (including M67, the Hyades, and 47 Tuc)rather well. Moreover, our interpretations of such data are verysimilar, if not identical, with those given in Paper I from aconsideration of BV(RI)C observations for the sameclusters-which provides a compelling argument in support of thecolor-Teff relations that are reported in both studies. Inthe present investigation, we have also analyzed the observedStrömgren photometry for the classic Population II subdwarfs,compared our ``final'' (b-y)-Teff relationship with thosederived empirically in a number of recent studies and examined in somedetail the dependence of the m1 index on [Fe/H].Based, in part, on observations made with the Nordic Optical Telescope,operated jointly on the island of La Palma by Denmark, Finland, Iceland,Norway, and Sweden, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.Based, in part, on observations obtained with the Danish 1.54 mtelescope at the European Southern Observatory, La Silla, Chile.
| Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.
| High-Precision Near-Infrared Photometry of a Large Sample of Bright Stars Visible from the Northern Hemisphere We present the results of 8 yr of infrared photometric monitoring of alarge sample of stars visible from Teide Observatory (Tenerife, CanaryIslands). The final archive is made up of 10,949 photometric measuresthrough a standard InSb single-channel photometer system, principally inJHK, although some stars have measures in L'. The core of this list ofstars is the standard-star list developed for the Carlos SánchezTelescope. A total of 298 stars have been observed on at least twooccasions on a system carefully linked to the zero point defined byVega. We present high-precision photometry for these stars. The medianuncertainty in magnitude for stars with a minimum of four observationsand thus reliable statistics ranges from 0.0038 mag in J to 0.0033 magin K. Many of these stars are faint enough to be observable with arraydetectors (42 are K>8) and thus to permit a linkage of the bright andfaint infrared photometric systems. We also present photometry of anadditional 25 stars for which the original measures are no longeravailable, plus photometry in L' and/or M of 36 stars from the mainlist. We calculate the mean infrared colors of main-sequence stars fromA0 V to K5 V and show that the locus of the H-K color is linearlycorrelated with J-H. The rms dispersion in the correlation between J-Hand H-K is 0.0073 mag. We use the relationship to interpolate colors forall subclasses from A0 V to K5 V. We find that K and M main-sequence andgiant stars can be separated on the color-color diagram withhigh-precision near-infrared photometry and thus that photometry canallow us to identify potential mistakes in luminosity classclassification.
| Chromospherically Active Stars. XXI. The Giant, Single-lined Binaries HD 89546 And HD 113816 We have obtained spectroscopy and photometry of the chromosphericallyactive, single-lined spectroscopic binaries HD 89546 and HD 113816. HD89546 has a circular orbit with a period of 21.3596 days. Its primaryhas a spectral type of G9 III and is somewhat metal-poor with[Fe/H]~-0.5. HD 113816 has an orbit with a period of 23.6546 and a loweccentricity of 0.022. Its mass function is extremely small, 0.0007Msolar, consistent with a very low inclination. The primaryis a slightly metal-poor K2 III. A decade or more of photometricmonitoring with an automatic telescope demonstrates that both systemsdisplay brightness variations due to rotational modulation of thevisibility of photospheric star spots, as well as light-curve changesresulting from the redistribution of star spots by differential rotationand long-term changes in the filling factor of the spots. We determinedrotation periods for each season when the observations were numerousenough. Our mean rotation periods of 21.3 and 24.1 days for HD 89546 andHD 113816, respectively, confirm that the giants in each system aresynchronously rotating. The orbital elements and properties of the giantcomponents of these two systems, including levels of surface magneticactivity, are quite similar. However, the two rotational inclinationsare rather different, 57° for HD 89546 and 13° for HD 113816.Thus the latter giant is seen nearly pole on. We analyzed the lightcurves for similarities and differences that result from viewing thesetwo systems from quite different inclinations.
| Carbon-rich giants in the HR diagram and their luminosity function The luminosity function (LF) of nearly 300 Galactic carbon giants isderived. Adding BaII giants and various related objects, about 370objects are located in the RGB and AGB portions of the theoretical HRdiagram. As intermediate steps, (1) bolometric corrections arecalibrated against selected intrinsic color indices; (2) the diagram ofphotometric coefficients 1/2 vs. astrometric trueparallaxes varpi are interpreted in terms of ranges of photosphericradii for every photometric group; (3) coefficients CR andCL for bias-free evaluation of mean photospheric radii andmean luminosities are computed. The LF of Galactic carbon giantsexhibits two maxima corresponding to the HC-stars of the thick disk andto the CV-stars of the old thin disk respectively. It is discussed andcompared to those of carbon stars in the Magellanic Clouds and Galacticbulge. The HC-part is similar to the LF of the Galactic bulge,reinforcing the idea that the Bulge and the thick disk are part of thesame dynamical component. The CV-part looks similar to the LF of theLarge Magellanic Cloud (LMC), but the former is wider due to thesubstantial errors on HIPPARCOS parallaxes. The obtained meanluminosities increase with increasing radii and decreasing effectivetemperatures, along the HC-CV sequence of photometric groups, except forHC0, the earliest one. This trend illustrates the RGB- and AGB-tracks oflow- and intermediate-mass stars for a range in metallicities. From acomparison with theoretical tracks in the HR diagram, the initial massesMi range from about 0.8 to 4.0 Msun for carbongiants, with possibly larger masses for a few extreme objects. A largerange of metallicities is likely, from metal-poor HC-stars classified asCH stars on the grounds of their spectra (a spheroidal component), tonear-solar compositions of many CV-stars. Technetium-rich carbon giantsare brighter than the lower limit Mbol =~ -3.6+/- 0.4 andcentered at =~-4.7+0.6-0.9 at about =~(2935+/-200) K or CV3-CV4 in our classification. Much like the resultsof Van Eck et al. (\cite{vaneck98}) for S stars, this confirms theTDU-model of those TP-AGB stars. This is not the case of the HC-stars inthe thick disk, with >~ 3400 K and>~ -3.4. The faint HC1 and HC2-stars( =~ -1.1+0.7-1.0) arefound slightly brighter than the BaII giants ( =~-0.3+/-1.3) on average. Most RCB variables and HdC stars range fromMbol =~ -1 to -4 against -0.2 to -2.4 for those of the threepopulation II Cepheids in the sample. The former stars show the largestluminosities ( <~ -4 at the highest effectivetemperatures (6500-7500 K), close to the Mbol =~ -5 value forthe hot LMC RCB-stars (W Men and HV 5637). A full discussion of theresults is postponed to a companion paper on pulsation modes andpulsation masses of carbon-rich long period variables (LPVs; Paper IV,present issue). This research has made use of the Simbad databaseoperated at CDS, Strasbourg, France. Partially based on data from theESA HIPPARCOS astrometry satellite. Table 2 is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/390/967
| New algorithms for reducing cross-dispersed echelle spectra We describe advanced image processing algorithms, implemented in a dataanalysis package for conventional and cross-dispersed echelle spectra.Comparisons with results from other packages illustrate the outstandingquality of the new REDUCE package, particularly in terms of resultingnoise level and treatment of CCD defects and cosmic ray spikes. REDUCEcan be adapted relatively easily to handle a variety of instrumenttypes, including spectrographs with prism or grating cross-dispersers,possibly fed by a fiber or image slicer, etc. In addition to reducedspectra, an accurate spatial profile is recovered, providing valuableinformation about the spectrograph PSF and simplifying scattered lightcorrections. Based on data obtained with the VLT UVES and SAAO Giraffespectrometers.
| Nucleosynthesis and Mixing on the Asymptotic Giant Branch. III. Predicted and Observed s-Process Abundances We present the results of s-process nucleosynthesis calculations forasymptotic giant branch (AGB) stars of different metallicities anddifferent initial stellar masses (1.5 and 3 Msolar), and wepresent comparisons of them with observational constraints fromhigh-resolution spectroscopy of evolved stars over a wide metallicityrange. The computations were based on previously published stellarevolutionary models that account for the third dredge-up phenomenonoccurring late on the AGB. Neutron production is driven by the13C(α,n)16O reaction during the interpulseperiods in a tiny layer in radiative equilibrium at the top of the He-and C-rich shell. The neutron source 13C is manufacturedlocally by proton captures on the abundant 12C; a few protonsare assumed to penetrate from the convective envelope into the radiativelayer at any third dredge-up episode, when a chemical discontinuity isestablished between the convective envelope and the He- and C-richzones. A weaker neutron release is also guaranteed by the marginalactivation of the reaction 22Ne(α,n)25Mgduring the convective thermal pulses. Owing to the lack of a consistentmodel for 13C formation, the abundance of 13Cburnt per cycle is allowed to vary as a free parameter over a wideinterval (a factor of 50). The s-enriched material is subsequently mixedwith the envelope by the third dredge-up, and the envelope compositionis computed after each thermal pulse. We follow the changes in thephotospheric abundance of the Ba-peak elements (heavy s [hs]) and thatof the Zr-peak ones (light s [ls]), whose logarithmic ratio [hs/ls] hasoften been adopted as an indicator of the s-process efficiency (e.g., ofthe neutron exposure). Our model predictions for this parameter show acomplex trend versus metallicity. Especially noteworthy is theprediction that the flow along the s-path at low metallicities drainsthe Zr and Ba peaks and builds an excess at the doubly magic208Pb, which is at the termination of the s-path. We thendiscuss the effects on the models of variations in the crucialparameters of the 13C pocket, finding that they are notcritical for interpreting the results. The theoretical predictions arecompared with published abundances of s-elements for AGB giants ofclasses MS, S, SC, post-AGB supergiants, and for various classes ofbinary stars, which supposedly derive their composition by mass transferfrom an AGB companion. This is done for objects belonging both to theGalactic disk and to the halo. The observations in general confirm thecomplex dependence of neutron captures on metallicity. They suggest thata moderate spread exists in the abundance of 13C that isburnt in different stars. Although additional observations are needed,it seems that a good understanding has been achieved of s-processoperation in AGB stars. Finally, the detailed abundance distributionincluding the light elements (CNO) of a few s-enriched stars atdifferent metallicities are examined and satisfactorily reproduced bymodel envelope compositions.
| Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521
| The proper motions of fundamental stars. I. 1535 stars from the Basic FK5 A direct combination of the positions given in the HIPPARCOS cataloguewith astrometric ground-based catalogues having epochs later than 1939allows us to obtain new proper motions for the 1535 stars of the BasicFK5. The results are presented as the catalogue Proper Motions ofFundamental Stars (PMFS), Part I. The median precision of the propermotions is 0.5 mas/year for mu alpha cos delta and 0.7mas/year for mu delta . The non-linear motions of thephotocentres of a few hundred astrometric binaries are separated intotheir linear and elliptic motions. Since the PMFS proper motions do notinclude the information given by the proper motions from othercatalogues (HIPPARCOS, FK5, FK6, etc.) this catalogue can be used as anindependent source of the proper motions of the fundamental stars.Catalogue (Table 3) is only available at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strastg.fr/cgi-bin/qcat?J/A+A/365/222
| The Chemical Composition and Orbital Parameters of Barium Stars Not Available
| Ultraviolet Emission Lines in BA and Non-BA Giants With the Hubble Space Telescope (HST) and the Goddard High ResolutionSpectrograph we have observed four barium and three weak barium stars inthe ultraviolet spectral region, together with two nonpeculiar giantstandard stars. An additional suspected Ba star was observed with HSTand the Space Telescope Imaging Spectrograph. In the H-R diagram, threeof the observed Ba stars lie on the same evolutionary tracks as theHyades giants. Using International Ultraviolet Explorer (IUE) spectra ofpreviously studied giants together with our HST spectra, we investigatewhether the chromospheric and transition layer emission-line spectra ofthe Ba stars are different from those of nonpeculiar giants and fromthose of giants with peculiar carbon and/or nitrogen abundances. Exceptfor the Ba star HD 46407 and the suspected Ba star HD 65699, the Ba starand mild Ba star emission-line fluxes are, for a given effectivetemperature and for a given luminosity, lower than those for thenonpeculiar giants observed with IUE. In comparison with theHST-observed standard stars, the C IV λ1550-to-C II λ1335line flux ratios are smaller, but not necessarily so in comparison withall IUE-observed nonpeculiar giants. However, the C IV-to-C II line fluxratios for the Ba stars decrease with increasing carbon abundances. Thisshows that the energy balance in the lower transition layer isinfluenced by the carbon abundance. The temperature gradient appears tobe smaller in the C II line-emitting region. There does not seem to be adifference in chromospheric electron densities for the Ba and non-Bastars, though this result is rather uncertain. Based on observationswith the NASA/ESA Hubble Space Telescope obtained at the Space TelescopeScience Institute, which is operated by the Association of Universitiesfor Research in Astronomy, Inc., under NASA contract NAS 5-26555.
| K-Band Calibration of the Red Clump Luminosity The average near-infrared (K-band) luminosity of 238 Hipparcos red clumpgiants is derived and then used to measure the distance to the Galacticcenter. These Hipparcos red clump giants have been previously employedas I-band standard candles. The advantage of the K-band is a decreasedsensitivity to reddening and perhaps a reduced systematic dependence onmetallicity. In order to investigate the latter, and also to refer ourcalibration to a known metallicity zero point, we restrict our sample ofred clump calibrators to those with abundances derived fromhigh-resolution spectroscopic data. The mean metallicity of the sampleis [Fe/H]=-0.18 dex (σ=0.17 dex). The data are consistent with nocorrelation between MK and [Fe/H] and only weakly constrainthe slope of this relation. The luminosity function of the sample peaksat MK=-1.61+/-0.03 mag. Next, we assemble published opticaland near-infrared photometry for ~20 red clump giants in a Baade'swindow field with a mean metallicity of [Fe/H]=-0.17+/-0.09 dex, whichis nearly identical to that of the Hipparcos red clump. Assuming thatthe average (V-I)0 and (V-K)0 colors of these twored clumps are the same, the extinctions in the Baade's window field arefound to be AV=1.56, AI=0.87, andAK=0.15, in agreement with previous estimates. We derive thedistance to the Galactic center: (m-M)0=14.58+/-0.11 mag, orR=8.24+/-0.42 kpc. The uncertainty in this distance measurement isdominated by the small number of Baade's window red clump giantsexamined here.
| Do All BA II Stars Have White Dwarf Companions? With the Hubble Space Telescope (HST) and the Goddard High ResolutionSpectrograph (GHRS) we have observed four barium stars, three mildbarium stars, and one weak G-band star in the ultraviolet spectralregion. One barium star was observed with HST and the Space TelescopeImaging Spectrograph (STIS). The aim was to check the hypothesis thatall these peculiar stars have white dwarf (WD) companions, which attheir asymptotic giant branch phase transferred mass with peculiarelement abundances to the present barium and CH peculiar stars. Assumingthat the ultraviolet continua of the cool giants, including the bariumstars, are generated in their chromospheres and that the relationsbetween the continua and the emission lines created in the chromospheresand transition layers are similar in field giants and barium stars, wefound that, indeed, most of our target barium and weak barium starsappear to have excess flux in the UV when compared to standard giantstars. For most of the stars the excess flux can be attributed to WDcompanions with temperatures between 10,000 and 12,000 K, if the WD massis about 0.6 Msolar. Cooling times for the WDs were derivedfrom their effective temperatures and model calculations by M. Wood. Thecalculated cooling times are longer than the lifetimes of the bariumstars on the giant branch. For our target stars the mass transfertherefore happened while they were still on the main sequence. For twoof the mild barium stars and one or perhaps two barium stars the derivedcooling times for the WD companions come out to be longer than the totalevolutionary times of the barium stars as calculated by Schaller et al.If our derivations are correct (the error bars are rather large) theneither evolutionary models with larger convective overshoot have to beused for the barium stars or the cooling times of the white dwarfs haveto be revised downward. Possibly an additional (as yet unknown) coolingmechanism has to be considered? The weak G-band star HD 165634, whichhas a carbon underabundance of about a factor of 10, also appears tohave a WD companion. We discuss the implications of this very low carbonabundance. Based on observations with the NASA/ESA Hubble SpaceTelescope obtained at the Space Telescope Science Institute, which isoperated by the Association of Universities for Research in Astronomy.Incorporated, under NASA contract NAS5-26555.
| Rotation and lithium in single giant stars In the present work, we study the link between rotation and lithiumabundance in giant stars of luminosity class III, on the basis of alarge sample of 309 single stars of spectral type F, G and K. We havefound a trend for a link between the discontinuity in rotation at thespectral type G0III and the behavior of lithium abundances around thesame spectral type. The present work also shows that giant starspresenting the highest lithium contents, typically stars earlier thanG0III, are those with the highest rotation rates, pointing for adependence of lithium content on rotation, as observed for otherluminosity classes. Giant stars later than G0III present, as a rule, thelowest rotation rates and lithium contents. A large spread of about fivemagnitudes in lithium abundance is observed for the slow rotators.Finally, single giant stars with masses 1.5 < M/Msun<=2.5 show a clearest trend for a correlation between rotational velocityand lithium abundance. Based on observations collected at theObservatoire de Haute -- Provence (France) and at the European SouthernObservatory, La Silla (Chile). Table 2 is only available electronicallywith the On-Line publication athttp://link.springer.de/link/service/00230/
| Sixth Catalogue of Fundamental Stars (FK6). Part I. Basic fundamental stars with direct solutions The FK6 is a suitable combination of the results of the HIPPARCOSastrometry satellite with ground-based data, measured over more than twocenturies and summarized in the FK5. Part I of the FK6 (abbreviatedFK6(I)) contains 878 basic fundamental stars with direct solutions. Suchdirect solutions are appropriate for single stars or for objects whichcan be treated like single stars. From the 878 stars in Part I, we haveselected 340 objects as "astrometrically excellent stars", since theirinstantaneous proper motions and mean (time-averaged) ones do not differsignificantly. Hence most of the astrometrically excellent stars arewell-behaving "single-star candidates" with good astrometric data. Thesestars are most suited for high-precision astrometry. On the other hand,199 of the stars in Part I are Δμ binaries in the sense ofWielen et al. (1999). Many of them are newly discovered probablebinaries with no other hitherto known indication of binarity. The FK6gives, besides the classical "single-star mode" solutions (SI mode),other solutions which take into account the fact that hidden astrometricbinaries among "apparently single-stars" introduce sizable "cosmicerrors" into the quasi-instantaneously measured HIPPARCOS proper motionsand positions. The FK6 gives in addition to the SI mode the "long-termprediction (LTP) mode" and the "short-term prediction (STP) mode". TheseLTP and STP modes are on average the most precise solutions forapparently single stars, depending on the epoch difference with respectto the HIPPARCOS epoch of about 1991. The typical mean error of anFK6(I) proper motion in the single-star mode is 0.35 mas/year. This isabout a factor of two better than the typical HIPPARCOS errors for thesestars of 0.67 mas/year. In the long-term prediction mode, in whichcosmic errors are taken into account, the FK6(I) proper motions have atypical mean error of 0.50 mas/year, which is by a factor of more than 4better than the corresponding error for the HIPPARCOS values of 2.21mas/year (cosmic errors included).
| Library of Medium-Resolution Fiber Optic Echelle Spectra of F, G, K, and M Field Dwarfs to Giant Stars We present a library of Penn State Fiber Optic Echelle (FOE)observations of a sample of field stars with spectral types F to M andluminosity classes V to I. The spectral coverage is from 3800 to 10000Å with a nominal resolving power of 12,000. These spectra includemany of the spectral lines most widely used as optical and near-infraredindicators of chromospheric activity such as the Balmer lines (Hαto Hepsilon), Ca II H & K, the Mg I b triplet, Na I D_1, D_2, He ID_3, and Ca II IRT lines. There are also a large number of photosphericlines, which can also be affected by chromospheric activity, andtemperature-sensitive photospheric features such as TiO bands. Thespectra have been compiled with the goal of providing a set of standardsobserved at medium resolution. We have extensively used such data forthe study of active chromosphere stars by applying a spectralsubtraction technique. However, the data set presented here can also beutilized in a wide variety of ways ranging from radial velocitytemplates to study of variable stars and stellar population synthesis.This library can also be used for spectral classification purposes anddetermination of atmospheric parameters (T_eff, logg, [Fe/H]). A digitalversion of all the fully reduced spectra is available via ftp and theWorld Wide Web (WWW) in FITS format.
| Spectral Irradiance Calibration in the Infrared. X. A Self-Consistent Radiometric All-Sky Network of Absolutely Calibrated Stellar Spectra We start from our six absolutely calibrated continuous stellar spectrafrom 1.2 to 35 μm for K0, K1.5, K3, K5, and M0 giants. These wereconstructed as far as possible from actual observed spectral fragmentstaken from the ground, the Kuiper Airborne Observatory, and the IRAS LowResolution Spectrometer, and all have a common calibration pedigree.From these we spawn 422 calibrated ``spectral templates'' for stars withspectral types in the ranges G9.5-K3.5 III and K4.5-M0.5 III. Wenormalize each template by photometry for the individual stars usingpublished and/or newly secured near- and mid-infrared photometryobtained through fully characterized, absolutely calibrated,combinations of filter passband, detector radiance response, and meanterrestrial atmospheric transmission. These templates continue ourongoing effort to provide an all-sky network of absolutely calibrated,spectrally continuous, stellar standards for general infrared usage, allwith a common, traceable calibration heritage. The wavelength coverageis ideal for calibration of many existing and proposed ground-based,airborne, and satellite sensors, particularly low- tomoderate-resolution spectrometers. We analyze the statistics of probableuncertainties, in the normalization of these templates to actualphotometry, that quantify the confidence with which we can assert thatthese templates truly represent the individual stars. Each calibratedtemplate provides an angular diameter for that star. These radiometricangular diameters compare very favorably with those directly observedacross the range from 1.6 to 21 mas.
| A re-analysis of the heavy-element abundance of barium stars. Not Available
| A catalog of rotational and radial velocities for evolved stars Rotational and radial velocities have been measured for about 2000evolved stars of luminosity classes IV, III, II and Ib covering thespectral region F, G and K. The survey was carried out with the CORAVELspectrometer. The precision for the radial velocities is better than0.30 km s-1, whereas for the rotational velocity measurementsthe uncertainties are typically 1.0 km s-1 for subgiants andgiants and 2.0 km s-1 for class II giants and Ib supergiants.These data will add constraints to studies of the rotational behaviourof evolved stars as well as solid informations concerning the presenceof external rotational brakes, tidal interactions in evolved binarysystems and on the link between rotation, chemical abundance and stellaractivity. In this paper we present the rotational velocity v sin i andthe mean radial velocity for the stars of luminosity classes IV, III andII. Based on observations collected at the Haute--Provence Observatory,Saint--Michel, France and at the European Southern Observatory, LaSilla, Chile. Table \ref{tab5} also available in electronic form at CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| The effective temperature scale of giant stars (F0-K5). I. The effective temperature determination by means of the IRFM We have applied the InfraRed Flux Method (IRFM) to a sample ofapproximately 500 giant stars in order to derive their effectivetemperatures with an internal mean accuracy of about 1.5% and a maximumuncertainty in the zero point of the order of 0.9%. For the applicationof the IRFM, we have used a homogeneous grid of theoretical modelatmosphere flux distributions developed by \cite[Kurucz (1993)]{K93}.The atmospheric parameters of the stars roughly cover the ranges: 3500 K<= T_eff <= 8000 K; -3.0 <= [Fe/H] <= +0.5; 0.5 <= log(g) <= 3.5. The monochromatic infrared fluxes at the continuum arebased on recent photometry with errors that satisfy the accuracyrequirements of the work. We have derived the bolometric correction ofgiant stars by using a new calibration which takes the effect ofmetallicity into account. Direct spectroscopic determinations ofmetallicity have been adopted where available, although estimates basedon photometric calibrations have been considered for some stars lackingspectroscopic ones. The adopted infrared absolute flux calibration,based on direct optical measurements of stellar angular diameters, putsthe effective temperatures determined in this work in the same scale asthose obtained by direct methods. We have derived up to fourtemperatures, TJ, TH, TK and T_{L'},for each star using the monochromatic fluxes at different infraredwavelengths in the photometric bands J, H, K and L'. They show goodconsistency over 4000 K, and there is no appreciable trend withwavelength, metallicity and/or temperature. We provide a detaileddescription of the steps followed for the application of the IRFM, aswell as the sources of error and their effect on final temperatures. Wealso provide a comparison of the results with previous work.
| Catalogs of temperatures and [Fe/H] averages for evolved G and K stars A catalog of mean values of [Fe/H] for evolved G and K stars isdescribed. The zero point for the catalog entries has been establishedby using differential analyses. Literature sources for those entries areincluded in the catalog. The mean values are given with rms errors andnumbers of degrees of freedom, and a simple example of the use of thesestatistical data is given. For a number of the stars with entries in thecatalog, temperatures have been determined. A separate catalogcontaining those data is briefly described. Catalog only available atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html
|
Добавить новую статью
Внешние ссылки
- - Внешних ссылок не найдено -
Добавить внешнюю ссылку
Группы:
|
Наблюдательные данные и астрометрия
Созвездие: | Дева |
Прямое восхождение: | 12h05m12.50s |
Склонение: | +08°43'59.0" |
Видимая звёздная величина: | 4.12 |
Расстояние: | 52.411 парсек |
Собственное движение RA: | -220 |
Собственное движение Dec: | 52 |
B-T magnitude: | 5.346 |
V-T magnitude: | 4.212 |
Каталоги и обозначения:
|