내용
사진
사진 업로드
DSS Images Other Images
관련 글
Potassium abundances in nearby metal-poor stars Aims.The potassium abundances for 58 metal-poor stars are determinedusing high-resolution spectroscopy. The abundance trends in stars ofdifferent population are discussed. Methods: .All abundanceresults have been derived from NLTE statistical equilibrium calculationsand spectrum synthesis methods. Results: .The NLTE corrections aresignificant (-0.20 to -0.55 dex) and they depend on the effectivetemperatures and surface gravities. The potassium abundances of thindisk, thick disk and halo stars show distinct trends, such as in thecase of the α-elements. [K/Fe] gradually increases with a decreasein [Fe/H] for thin disk stars, [K/Fe] of thick disk stars is nearlyconstant at [K/Fe] ~ +0.30 dex; halo stars also have nearly constantvalues of [K/Fe] ~ +0.20 dex. Conclusions: .The deriveddependence between [K/Fe] and [Fe/H] is in agreement with thetheoretical prediction of published model calculations of the chemicalevolution of the Galaxy. The nearly constant [K/Mg] ratio with smallscatter suggests that the nucleosynthesis of potassium is closelycoupled to the α-elements.
| Abundance trends in kinematical groups of the Milky Way's disk We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.
| Magnesium abundances in mildly metal-poor stars from different indicators We present Mg abundances derived from high-resolution spectra usingseveral MgI and two high-excitation MgII lines for 19 metal-poor starswith [Fe/H] values between -1.1 and +0.2. The main goal is to search forsystematic differences in the derived abundances between the twoionization state lines. Our analysis shows that the one-dimensionallocal thermodynamic equilibrium (LTE) and non-LTE (N-LTE) study finds avery good agreement between these features. The [Mg/Fe] versus [Fe/H]relationship derived, despite the small sample of stars, is also inagreement with the classical figure of increasing [Mg/Fe] withdecreasing metallicity. We find a significant scatter however, in the[Mg/Fe] ratio at [Fe/H]~-0.6 which is currently explained as aconsequence of the overlap at this metallicity of thick- and thin-discstars, which were probably formed from material with differentnucleosynthesis histories. We speculate on the possible consequences ofthe agreement found between MgI and MgII lines on the very well-known Oproblem in metal-poor stars. We also study the [O/Mg] ratio in thesample stars using O abundances from the literature and find that thecurrent observations and nucleosynthetic predictions from Type IIsupernovae disagree. We briefly discuss some alternatives to solve thisdiscrepancy.
| Lithium abundances of the local thin disc stars Lithium abundances are presented for a sample of 181 nearby F and Gdwarfs with accurate Hipparcos parallaxes. The stars are on circularorbits about the Galactic centre and, hence, are identified as belongingto the thin disc. This sample is combined with two published surveys toprovide a catalogue of lithium abundances, metallicities ([Fe/H]),masses, and ages for 451 F-G dwarfs, almost all belonging to the thindisc. The lithium abundances are compared and contrasted with publishedlithium abundances for F and G stars in local open clusters. The fieldstars span a larger range in [Fe/H] than the clusters for which [Fe/H]~=0.0 +/- 0.2. The initial (i.e. interstellar) lithium abundance of thesolar neighbourhood, as derived from stars for which astration oflithium is believed to be unimportant, is traced from logɛ(Li) =2.2 at [Fe/H]=-1 to logɛ(Li) = 3.2 at +0.1. This form for theevolution is dependent on the assumption that astration of lithium isnegligible for the stars defining the relation. An argument is advancedthat this latter assumption may not be entirely correct, and, theevolution of lithium with [Fe/H] may be flatter than previouslysupposed. A sharp Hyades-like Li dip is not seen among the field starsand appears to be replaced by a large spread among lithium abundances ofstars more massive than the lower mass limit of the dip. Astration oflithium by stars of masses too low to participate in the Li dip isdiscussed. These stars show little to no spread in lithium abundance ata given [Fe/H] and mass.
| The Indo-US Library of Coudé Feed Stellar Spectra We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.
| Classification of Spectra from the Infrared Space Observatory PHT-S Database We have classified over 1500 infrared spectra obtained with the PHT-Sspectrometer aboard the Infrared Space Observatory according to thesystem developed for the Short Wavelength Spectrometer (SWS) spectra byKraemer et al. The majority of these spectra contribute to subclassesthat are either underrepresented in the SWS spectral database or containsources that are too faint, such as M dwarfs, to have been observed byeither the SWS or the Infrared Astronomical Satellite Low ResolutionSpectrometer. There is strong overall agreement about the chemistry ofobjects observed with both instruments. Discrepancies can usually betraced to the different wavelength ranges and sensitivities of theinstruments. Finally, a large subset of the observations (~=250 spectra)exhibit a featureless, red continuum that is consistent with emissionfrom zodiacal dust and suggest directions for further analysis of thisserendipitous measurement of the zodiacal background.Based on observations with the Infrared Space Observatory (ISO), aEuropean Space Agency (ESA) project with instruments funded by ESAMember States (especially the Principle Investigator countries: France,Germany, Netherlands, and United Kingdom) and with the participation ofthe Institute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).
| The Rise of the s-Process in the Galaxy From newly obtained high-resolution, high signal-to-noise ratio spectrathe abundances of the elements La and Eu have been determined over thestellar metallicity range -3<[Fe/H]<+0.3 in 159 giant and dwarfstars. Lanthanum is predominantly made by the s-process in the solarsystem, while Eu owes most of its solar system abundance to ther-process. The changing ratio of these elements in stars over a widemetallicity range traces the changing contributions of these twoprocesses to the Galactic abundance mix. Large s-process abundances canbe the result of mass transfer from very evolved stars, so to identifythese cases we also report carbon abundances in our metal-poor stars.Results indicate that the s-process may be active as early as[Fe/H]=-2.6, although we also find that some stars as metal-rich as[Fe/H]=-1 show no strong indication of s-process enrichment. There is asignificant spread in the level of s-process enrichment even at solarmetallicity.
| The Correlation of Lithium and Beryllium in F and G Field and Cluster Dwarf Stars Although Li has been extensively observed in main-sequence field andcluster stars, there are relatively fewer observations of Be. We haveobtained Keck HIRES spectra of 36 late F and early G dwarfs in order tostudy the Li-Be correlation we found previously in the temperatureregime of 5900-6650 K. The sample size for this temperature range withdetectable and (usually) depleted Li and Be is now 88, including Li andBe abundances in both cluster and field stars. Therefore we can nowinvestigate the influence of other parameters such as age, temperature,and metallicity on the correlation. The Be spectra at 3130 Å weretaken over six nights from 1999 November to 2002 January and have aspectral resolution of ~48,000 and a median signal-to-noise ratio (S/N)of 108 pixel-1. We obtained Li spectra of 22 stars with theUniversity of Hawaii 88 inch (2.2 m) telescope and coudéspectrograph with a spectral resolution of ~70,000 and a median S/N of110 pixel-1. We have redetermined the effective temperaturesfor all the stars and adopted other parameters from published data orempirical relations. The abundances of both Li and Be in the stars weobserved were determined from spectrum synthesis with MOOG 2002. Thepreviously observed Li equivalent widths for some of our Be stars wereused with the new temperatures and MOOG 2002 in the ``blends'' mode. Forthe 46 field stars from this and earlier studies we find a linearrelation between A(Li) and A(Be) with a slope of 0.375+/-0.036. Over theTeff range 5900-6650 K, we find the modest scatter about theBe-Li relation to be significantly correlated with Teff andperhaps also [Fe/H]. Dividing the sample into two temperature regimes of6300-6650 K (corresponding to the cool side of the Li-Be dip) and5900-6300 K (corresponding to the Li ``plateau'') reveals possible smalldifferences in the slopes for the two groups, 0.404+/-0.034 and0.365+/-0.049, respectively. When we include the cluster stars (Hyades,Pleiades, Praesepe, UMa Group, and Coma), the slope for the fulltemperature range (88 stars) is essentially the same, at 0.382+/-0.030,as for the field stars alone. For the hotter temperature group of 35Li-Be dip stars in the field and in clusters the slope is higher, at0.433+/-0.036, while for the cooler star group (54 stars) the slope is0.337+/-0.031, different by more than 1 σ. This small differencein the slope is predicted by the theory of rotationally induced mixing.The four stars with [Fe/H] less than -0.4 are all below the best-fitrelation, i.e., there is more Be depletion at a given A(Li) or less Beab initio. The youngest stars, i.e., Pleiades, have less depletion ofboth Li and Be. This too is predicted by rotationally induced slowmixing. Combining the Be results from both field and cluster stars, wefind that there are stars with undepleted Be, i.e., near the meteoriticvalues of 1.42 dex, at all temperatures from 5500 to 6800 K. Depletionsof Be of up to and even exceeding 2 orders of magnitude are commonbetween 6000 and 6700 K.
| Synthetic Lick Indices and Detection of α-enhanced Stars. II. F, G, and K Stars in the -1.0 < [Fe/H] < +0.50 Range We present an analysis of 402 F, G, and K solar neighborhood stars, withaccurate estimates of [Fe/H] in the range -1.0 to +0.5 dex, aimed at thedetection of α-enhanced stars and at the investigation of theirkinematical properties. The analysis is based on the comparison of 571sets of spectral indices in the Lick/IDS system, coming from fourdifferent observational data sets, with synthetic indices computed withsolar-scaled abundances and with α-element enhancement. We useselected combinations of indices to single out α-enhanced starswithout requiring previous knowledge of their main atmosphericparameters. By applying this approach to the total data set, we obtain alist of 60 bona fide α-enhanced stars and of 146 stars withsolar-scaled abundances. The properties of the detected α-enhancedand solar-scaled abundance stars with respect to their [Fe/H] values andkinematics are presented. A clear kinematic distinction betweensolar-scaled and α-enhanced stars was found, although a one-to-onecorrespondence to ``thin disk'' and ``thick disk'' components cannot besupported with the present data.
| Stellar Chemical Signatures and Hierarchical Galaxy Formation To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.
| The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of 14 000 F and G dwarfs We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989
| On the correlation of elemental abundances with kinematics among galactic disk stars We have performed the detailed analysis of 174 high-resolution spectraof FGK dwarfs obtained with the ELODIE echelle spectrograph at theObservatoire de Haute-Provence. Abundances of Fe, Si and Ni have beendetermined from equivalent widths under LTE approximation, whereasabundances of Mg have been determined under NLTE approximation usingequivalent widths of 4 lines and profiles of 5 lines. Spatial velocitieswith an accuracy better than 1 km s-1, as well as orbits,have been computed for all stars. They have been used to define 2subsamples kinematically representative of the thin disk and the thickdisk in order to highlight their respective properties. A transitionoccurs at [Fe/H] =-0.3. Stars more metal-rich than this value have aflat distribution with Zmax;<1 kpc and σW<20 km s-1, and a narrow distribution of [α/Fe].There exist stars in this metallicity regime which cannot belong to thethin disk because of their excentric orbits, neither to the thick diskbecause of their low scale height. Several thin disk stars areidentified down to [Fe/H] =-0.80. Their Mg enrichment is lower thanthick disk stars with the same metallicity. We confirm from a largersample the results of Feltzing et al. (\cite{felt03}) and Bensby et al.(\cite{ben03}) showing a decrease of [α/Fe] with [Fe/H] in thethick disk interpreted as the signature of the SNIa which haveprogressively enriched the ISM with iron. However our data suggest thatthe star formation in the thick disk stopped when the enrichment was[Fe/H] =-0.30, [Mg/Fe] =+0.20, [Si/Fe] =+0.17. A vertical gradient in[α/Fe] may exist in the thick disk but should be confirmed with alarger sample. Finally we have identified 2 new candidates of the HR1614moving group.Based on spectra collected with the ELODIE spectrograph at the 1.93-mtelescope of the Observatoire de Haute Provence (France).Tables 3 and 8 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/551
| Abundances of Na, Mg and Al in nearby metal-poor stars To determine the population membership of nearby stars we exploreabundance results obtained for the light neutron-rich elements23Na and 27 Al in a small sample of moderatelymetal-poor stars. Spectroscopic observations are limited to the solarneighbourhood so that gravities can be determined from HIPPARCOSparallaxes, and the results are confronted with those for a separatesample of more metal-poor typical halo stars. Following earlierinvestigations, the abundances of Na, Mg and Al have been derived fromNLTE statistical equilibrium calculations used as input to line profilesynthesis. Compared with LTE the abundances require systematiccorrections, with typical values of +0.05 for [Mg/Fe], -0.1 for [Na/Fe]and +0.2 for [Al/Fe] in thick disk stars where [Fe/H] -0.6. Inmore metal-poor halo stars these values reach +0.1, -0.4, and +0.5,respectively, differences that can no longer be ignored.After careful selection of a clean subsample free from suspected orknown binaries and peculiar stars, we find that [Na/Mg] and [Al/Mg], incombination with [Mg/Fe], space velocities and stellar evolutionaryages, make possible an individual discrimination between thick disk andhalo stars. At present, this evidence is limited by the small number ofstars analyzed. We identify a gap at [Al/Mg] -0.15 and [Fe/H] -1.0 that isolates stars of the thick disk from those in the halo.A similar separation occurs at [Na/Mg] -0.4. We do not confirm theage gap between thin and thick disk found by Fuhrmann. Instead we findan age boundary between halo and thick disk stars, however, with anabsolute value of 14 Gyr that must be considered as preliminary. Whilethe stellar sample is by no means complete, the resulting abundancesindicate the necessity to revise current models of chemical evolutionand/or stellar nucleosynthesis to allow for an adequate production ofneutron-rich species in early stellar generations.Based on observations collected at the German-Spanish AstronomicalCenter, Calar Alto (CAHA H01-2.2-002) and at the European SouthernObservatory, Chile (ESO 67.D-0086).
| Non-LTE Analysis of the Sodium Abundance of Metal-Poor Stars in the Galactic Disk and Halo We performed an extensive non-LTE analysis of the neutral sodium linesof Na I 5683/5688, 5890/5896, 6154/6161, and 8183/8195 in disk/halostars of types F-K covering a wide metallicity range (-4 <≈[Fe/H] <≈ +0.4), using our own data as well as data collectedfrom the literature. For comparatively metal-rich disk stars (-1<≈ [Fe/H] <≈ +0.4) where the weaker 6154/6161 linesare the best abundance indicators, we confirmed [Na/Fe] 0 with an"upturn" (i.e., a shallow/broad dip around -0.5 <≈ [Fe/H]<≈ 0) as already reported in previous studies. For themetal-deficient halo stars, where the much stronger 5890/5896 or8183/8195 lines subject to considerable (negative) non-LTE correctionsamounting to 0.5 dex have to be used, our analysis suggests mildly"subsolar" [Na/Fe] values down to -0.4 (with a somewhat largescatter of ± 0.2 dex) on the average at the typical halometallicity of [Fe/H] -2, followed by a rise again to a near-solarratio of [Na/Fe] 0 at the very metal-poor regime [Fe/H] -3to -4. These results are discussed in comparison with the previousobservational studies along with the theoretical predictions from theavailable chemical evolution models.
| Searching for Extrasolar Planets with the Hobby-Eberly Telescope The Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph(HRS) offer an exciting new opportunity to search for planetarycompanions to nearby stars using high precision radial velocitymeasurements. The HRS is a fiber-fed instrument housed in an insulatedchamber in the basement of the HET building. It is equipped with aniodine absorption cell to serve as the velocity metric. The spectrographis specifically designed to have excellent mechanical and thermalstability, which are essential in achieving excellent radial velocityprecision. The HET itself is operated in a queue scheduled manner,which is ideal for large surveys in which the temporal sampling of eachobject is critical. The HRS began regular scientific operations in June2001. We present results from the first year of observing with theHET/HRS which demonstrate that we have achieved a routine radialvelocity precision of about 3 meters/sec. There are several steps weplan to take to improve this precision level toward our goal of 1meter/sec.
| Observational Constraints on Potassium Synthesis During the Formation of Stars of the Galactic Disk The non-LTE potassium abundances in the atmospheres of 33 Galactic-diskstars are derived and the parameters of the atmospheres of 23 of thestars are determined. Neglecting departures from LTE results in asystematic overestimation of the potassium abundances and an increase intheir dispersion, even for differential analyses relative to the Sun.The non-LTE corrections are significant ((-0.2) (-0.6) dex) and dependon the surface gravities and effective temperatures of the stars. Themean potassium abundance for a sample of ten stars with [Fe/H]0.0is in agreement with the solar and meteoritic abundances (log ɛȯ(K)=5.12). As the stellar metallicity increases from [Fe/H]=(-1.0)to (0.2) dex, the [K/Fe] ratio decreases systematically from 0.3 dex to-0.1 dex. The derived dependence [K/Fe]-[Fe/H] is in agreement with theresults of published model calculations of the chemical evolution of theGalaxy. This indicates the dominance of explosive oxygen burning inmassive type II supernovae during the synthesis of potassium in theGalactic disk.
| Sodium Abundances in Stellar Atmospheres with Differing Metallicities The non-LTE sodium abundances of 100 stars with metallicities-3<[Fe/H]<0.3 are determined using high-dispersion spectra withhigh signal-to-noise ratios. The sodium abundances [Na/Fe] obtained areclose to the solar abundance and display a smaller scatter than valuespublished previously. Giants (logg<3.8) with [Fe/H]<-1 do notdisplay overabundances of sodium, and their sodium abundances do notshow an anticorrelation with the oxygen abundance, in contrast toglobular-cluster giants. They likewise do not show sodium-abundancevariations with motion along the giant branch. No appreciable decreasein the sodium abundance was detected for dwarfs (logg>3.8) withmetallicities -2<[Fe/H]<-1. The observed relation between [Na/Fe]and [Fe/H] is in satisfactory agreement with the theoreticalcomputations of Samland, which take into account the metallicitydependence of the sodium yield and a number of other factors affectingthe distribution of elements in the Galaxy during the course of itsevolution.
| Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.
| Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org
| Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731
| Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721
| On the Abundance of Potassium in Metal-Poor Stars Based on extensive statistical-equilibrium calculations, we performed anon-LTE analysis of the K I 7699 equivalent-width data ofmetal-deficient stars for the purpose of clarifying the behavior of thephotospheric potassium abundance in disk/halo stars. While the resultingnon-LTE abundance corrections turned out to be considerably large,amounting to 0.2-0.7dex, their effect on the [K/Fe] vs. [Fe/H] relationis not very important, since these corrections do not show anysignificant dependence on the metallicity. Hence, we again confirmed theresults of previous LTE studies, that [K/Fe] shows a gradual systematicincrease toward a lowered metallicity up to [K/Fe] ~ 0.3 - 0.5 at[Fe/H]} ~ -1 to -2, such as in the case of αelements.
| Revised Coordinates and Proper Motions of the Stars in the Luyten Half-Second Catalog We present refined coordinates and proper-motion data for the highproper-motion (HPM) stars in the Luyten Half-Second (LHS) catalog. Thepositional uncertainty in the original Luyten catalog is typicallygreater than 10" and is often greater than 30". We have used the digitalscans of the POSS I and POSS II plates to derive more accurate positionsand proper motions of the objects. Out of the 4470 candidates in the LHScatalog, 4323 objects were manually reidentified in the POSS I and POSSII scans. A small fraction of the stars were not found because of thelack of finder charts and digitized POSS II scans. The uncertainties inthe revised positions are typically ~2" but can be as high as ~8" in afew cases, which is a large improvement over the original data.Cross-correlation with the Tycho-2 and Hipparcos catalogs yielded 819candidates (with mR<~12). For these brighter sources, theposition and proper-motion data were replaced with the more accurateTycho-2/Hipparcos data. In total, we have revised proper-motionmeasurements and coordinates for 4040 stars and revised coordinates for4330 stars. The electronic version of the paper5 contains the updated information on all 4470stars in the LHS catalog.
| Abundances of Cu and Zn in metal-poor stars: Clues for Galaxy evolution We present new observations of copper and zinc abundances in 90metal-poor stars, belonging to the metallicity range -3<[Fe/H]<-0.5. The present study is based on high resolutionspectroscopic measurements collected at the Haute Provence Observatoire(R= 42 000, S/N>100). The trend of Cu and Zn abundances as a functionof the metallicity [Fe/H] is discussed and compared to that of otherheavy elements beyond iron. We also estimate spatial velocities andgalactic orbital parameters for our target stars in order to disentanglethe population of disk stars from that of halo stars using kinematiccriteria. In the absence of a firm a priori knowledge of thenucleosynthesis mechanisms controlling Cu and Zn production, and of therelative stellar sites, we derive constraints on these last from thetrend of the observed ratios [Cu/Fe] and [Zn/Fe] throughout the historyof the Galaxy, as well as from a few well established properties ofbasic nucleosynthesis processes in stars. We thus confirm that theproduction of Cu and Zn requires a number of different sources (neutroncaptures in massive stars, s-processing in low and intermediate massstars, explosive nucleosynthesis in various supernova types). We alsoattempt a ranking of the relative roles played by different productionmechanisms, and verify these hints through a simple estimate of thegalactic enrichment in Cu and Zn. In agreement with suggestionspresented earlier, we find evidence that type Ia Supernovae must play arelevant role, especially for the production of Cu. Based on the spectracollected with the 1.93-m telescope of Haute Provence Observatory.
| The C and N abundances in disk stars Abundance analysis of carbon and nitrogen has been performed for asample of 90 F and G type main-sequence disk stars with a metallicityrange of -1.0 < [Fe/H] <+0.2 using the \ion{C} i and N I lines. Weconfirm a moderate carbon excess in the most metal-poor disk dwarfsfound in previous investigations. Our results suggest that carbon isenriched by superwinds of metal-rich massive stars at the beginning ofthe disk evolution, while a significant amount of carbon is contributedby low-mass stars in the late stage. The observed behavior of [N/Fe] isabout solar in the disk stars, irrespective of the metallicity. Thisresult suggests that nitrogen is produced mostly by intermediate-massstars. Based on observations carried out at National Astrono- micalObservatories (Xinglong, China).
| Europium abundances in F and G disk dwarfs Europium abundances for 74 F and G dwarf stars of the galactic disk havebeen determined from the 4129.7 Å Eu II line. The stars wereselected from the sample of Edvardsson et al. (1993) and [Eu/Fe] shows asmaller scatter and a slightly weaker trend with [Fe/H] than found byWoolf et al. (1995). The data of the two analyses are homogenized andmerged. We also discuss the adopted effective temperature scale. Basedon observations carried out at the European Southern Observatory, LaSilla, Chile. Tables 2 and 6 are only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcal?J/A+A/381/500
| The Physical Basis of Luminosity Classification in the Late A-, F-, and Early G-Type Stars. I. Precise Spectral Types for 372 Stars This is the first in a series of two papers that address the problem ofthe physical nature of luminosity classification in the late A-, F-, andearly G-type stars. In this paper, we present precise spectralclassifications of 372 stars on the MK system. For those stars in theset with Strömgren uvbyβ photometry, we derive reddenings andpresent a calibration of MK temperature types in terms of the intrinsicStrömgren (b-y)0 index. We also examine the relationshipbetween the luminosity class and the Strömgren c1 index,which measures the Balmer jump. The second paper will address thederivation of the physical parameters of these stars, and therelationships between these physical parameters and the luminosityclass. Stars classified in this paper include one new λ Bootisstar and 10 of the F- and G-type dwarfs with recently discoveredplanets.
| Lithium abundances for 185 main-sequence stars: Galactic evolution and stellar depletion of lithium We present a survey of lithium abundances in 185 main-sequence fieldstars with 5600 <~ Teff <~ 6600 K and -1.4 <~ [Fe/H]<~ +0.2 based on new measurements of the equivalent width of thelambda 6708 Li I line in high-resolution spectra of 130 stars and areanalysis of data for 55 stars from Lambert et al. (\cite{Lambert91}).The survey takes advantage of improved photometric and spectroscopicdeterminations of effective temperature and metallicity as well as massand age derived from Hipparcos absolute magnitudes, offering anopportunity to investigate the behaviour of Li as a function of theseparameters. An interesting result from this study is the presence of alarge gap in the log varepsilon (Li) - Teff plane, whichdistinguishes ``Li-dip'' stars like those first identified in the Hyadescluster by Boesgaard & Tripicco (\cite{Boesgaard86}) from otherstars with a much higher Li abundance. The Li-dip stars concentrate on acertain mass, which decreases with metallicity from about 1.4Msun at solar metallicity to 1.1 Msun at [Fe/H] =~-1.0. Excluding the Li-dip stars and a small group of lower mass starswith Teff < 5900 K and log varepsilon (Li) < 1.5, theremaining stars, when divided into four metallicity groups, may show acorrelation between Li abundance and stellar mass. The dispersion aroundthe log varepsilon (Li)-mass relation is about 0.2 dex below [Fe/H] =~-0.4 and 0.3 dex above this metallicity, which cannot be explained byobservational errors or differences in metallicity. Furthermore, thereis no correlation between the residuals of the log varepsilon (Li)-massrelations and stellar age, which ranges from 1.5 Gyr to about 15 Gyr.This suggests that Li depletion occurs early in stellar life and thatparameters other than stellar mass and metallicity affect the degree ofdepletion, e.g. initial rotation velocity and/or the rate of angularmomentum loss. It cannot be excluded, however, that a cosmic scatter ofthe Li abundance in the Galaxy at a given metallicity contributes to thedispersion in Li abundance. These problems make it difficult todetermine the Galactic evolution of Li from the data, but a comparisonof the upper envelope of the distribution of stars in the log varepsilon(Li) - [Fe/H] plane with recent Galactic evolutionary models by Romanoet al. (\cite{Romano99}) suggests that novae are a major source for theLi production in the Galactic disk; their occurrence seems to be theexplanation for the steep increase of Li abundance at [Fe/H] =~ -0.4.Based on observations carried out at Beijing Astronomical Observatory(Xinglong, PR China) and European Southern Observatory, La Silla, Chile.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/371/943 and athttp://www.edpsciences.org
| Analysis of neutron capture elements in metal-poor stars We derived model atmosphere parameters (Teff, log g, [Fe/H],Vt) for 90 metal-deficient stars (-0.5<[Fe/H]<-3),using echelle spectra from the ELODIE library (Soubiran et al.\cite{soubet98}). These parameters were analyzed and compared withcurrent determinations by other authors. The study of the followingelements was carried out: Mg, Si, Ca, Sr, Y, Ba, La, Ce, Nd, and Eu. Therelative contributions of s- and r-processes were evaluated andinterpreted through theoretical computations of the chemical evolutionof the Galaxy. The chemical evolution models (Pagel &Tautvaišienė \cite{pagta95}; Timmes et al. \cite{timet95})depict quite well the behaviour of [Si/Fe], [Ca/Fe] with [Fe/H]. Thetrend of [Mg/Fe] compares more favourably with the computations of Pagel& Tautvaišienė (\cite{pagta95}) than those of Timmes etal. (\cite{timet95}). The runs of n-capture elements vs. metallicity aredescribed well both by the model of Pagel & Tautvaišienė(\cite{pagta95}, \cite{pagta97}) and by the model of Travaglio et al.(\cite{travet99}) at [Fe/H]>-1.5, when the matter of the Galaxy issufficiently homogeneous. The analysis of n-capture element abundancesconfirms the jump in [Ba/Fe] at [Fe/H]=-2.5. Some stars from our sampleat [Fe/H]<-2.0 show a large scatter of Sr, Ba, Y, Ce. This scatter isnot caused by the errors in the measurements, and may reflect theinhomogeneous nature of the prestellar medium at early stages ofgalactic evolution. The matching of [Ba/Fe], [Eu/Fe] vs. [Fe/H] with theinhomogeneous model by Travaglio et al. (\cite{travet01a}) suggests thatat [Fe/H]<-2.5, the essential contribution to the n-rich elementabundances derives from the r-process. The main sources of theseprocesses may be low mass SN II. The larger dispersion of s-processelement abundances with respect to alpha -rich elements may arise bothfrom the birth of metal-poor stars in globular clusters with followingdifferent evolutionary paths and (or) from differences in s-elementenrichment in Galaxy populations. Based on spectra collected at theObservatoire de Haute-Provence (OHP), France
| On the stellar content of the open clusters Melotte 105, Hogg 15, Pismis 21 and Ruprecht 140 CCD observations in the B, V and I passbands have been used to generatecolour-magnitude diagrams reaching down to V ~ 19 mag for two slightlycharacterized (Melotte 105 and Hogg 15) and two almost unstudied (Pismis21 and Ruprecht 140) open clusters. The sample consists of about 1300stars observed in fields of about 4arcmin x4arcmin . Our analysis showsthat neither Pismis 21 nor Ruprecht 140 are genuine open clusters sinceno clear main sequences or other meaningful features can be seen intheir colour-magnitude diagrams. Melotte 105 and Hogg 15 are openclusters affected by E(B-V) = 0.42 +/- 0.03 and 0.95 +/- 0.05,respectively. Their distances to the Sun have been estimated as 2.2 +/-0.3 and 2.6 +/- 0.08 kpc, respectively, while the corresponding agesestimated from empirical isochrones fitted to the Main Sequence clustermembers are ~ 350 Myr and 300 Myr, respectively. The present data arenot consistent with the membership of the WN6 star HDE 311884 to Hogg15. Tables 2 to 5 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.793.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/370/931
|
새 글 등록
관련 링크
새 링크 등록
다음 그룹에 속해있음:
|
관측 및 측정 데이터
천체목록:
|