Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

TYC 3012-2528-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Characterizing the Near-UV Environment of M Dwarfs
We report the results of our Hubble Space Telescope (HST) snapshotsurvey with the ACS HRC PR200L prism, designed to measure the near-UVemission in a sample of nearby M dwarfs. Thirty-three stars wereobserved, spanning the mass range from 0.1 to 0.6 solar masses(Teff~2200-4000 K) where the UV energy distributions varywidely between active and inactive stars. These observations providemuch needed constraints on models of the habitability zone and theatmospheres of possible terrestrial planets orbiting M dwarf hosts andwill be useful in refining the target selection for future spacemissions such as Terrestrial Planet Finder (TPF). We compare our datawith a new generation of M dwarf atmospheric models and discuss theirimplications for the chromospheric energy budget. These NUV data willalso be valuable in conjunction with existing optical, FUV, and X-raydata to explore unanswered questions regarding the dynamo generation andmagnetic heating in low-mass stars.

Far-Infrared Properties of M Dwarfs
We report the mid- and far-infrared properties of nearby M dwarfs.Spitzer MIPS measurements were obtained for a sample of 62 stars at 24μm, with subsamples of 41 and 20 stars observed at 70 and 160 μm,respectively. We compare the results with current models of M starphotospheres and look for indications of circumstellar dust in the formof significant deviations of K-[24 μm] colors and 70 μm/24 μmflux ratios from the average M star values. At 24 μm, all 62 of thetargets were detected; 70 μm detections were achieved for 20 targetsin the subsample observed, and no detections were seen in the 160 μmsubsample. No clear far-infrared excesses were detected in our sample.The average far-infrared excess relative to the photospheric emission ofthe M stars is at least 4 times smaller than the similar average for asample of solar-type stars. However, this limit allows the averagefractional infrared luminosity in the M-star sample to be similar tothat for more massive stars. We have also set low limits(10-4 to 10-9 M⊕ depending onlocation) for the maximum mass of dust possible around our stars.

Exploring the Frequency of Close-in Jovian Planets around M Dwarfs
We discuss our high-precision radial velocity results of a sample of 90M dwarfs observed with the Hobby-Eberly Telescope and the Harlan J.Smith 2.7 m Telescope at McDonald Observatory, as well as the ESO VLTand the Keck I telescopes, within the context of the overall frequencyof Jupiter-mass planetary companions to main-sequence stars. None of thestars in our sample show variability indicative of a giant planet in ashort-period orbit, with a<=1 AU. We estimate an upper limit of thefrequency f of close-in Jovian planets around M dwarfs as <1.27% (atthe 1 σ confidence level). Furthermore, we determine that theefficiency of our survey in noticing planets in circular orbits is 98%for companions with msini>3.8MJ and a<=0.7 AU. Foreccentric orbits (e=0.6) the survey completeness is 95% for all planetswith msini>3.5MJ and a<=0.7 AU. Our results pointtoward a generally lower frequency of close-in Jovian planets for Mdwarfs as compared to FGK-type stars. This is an important piece ofinformation for our understanding of the process of planet formation asa function of stellar mass.Based on data collected with the Hobby-Eberly Telescope, which isoperated by McDonald Observatory on behalf of the University of Texas atAustin, Pennsylvania State University, Stanford University,Ludwig-Maximilians-Universität München, andGeorg-August-Universität Göttingen. Also based on observationscollected at the European Southern Observatory, Chile (ESO programs65.L-0428, 66.C-0446, 267.C-5700, 68.C-0415, 69.C-0722, 70.C-0044,71.C-0498, 072.C-0495, 173.C-0606). Additional data were obtained at theW. M. Keck Observatory, which is operated as a scientific partnershipamong the California Institute of Technology, the University ofCalifornia, and the National Aeronautics and Space Administration(NASA), and with the McDonald Observatory Harlan J. Smith 2.7 mtelescope.

Ca II H and K Chromospheric Emission Lines in Late-K and M Dwarfs
We have measured the profiles of the Ca II H and K chromosphericemission lines in 147 main-sequence stars of spectral type M5-K7 (masses0.30-0.55 Msolar) using multiple high-resolution spectraobtained during 6 years with the HIRES spectrometer on the Keck Itelescope. Remarkably, the average FWHM, equivalent widths, and lineluminosities of Ca II H and K increase by a factor of 3 with increasingstellar mass over this small range of stellar masses. We fit the Ca II Hand K lines with a double-Gaussian model to represent both thechromospheric emission and the non-LTE central absorption. Most of thesample stars display a central absorption that is typically redshiftedby ~0.1 km s-1 relative to the emission. This implies thatthe higher level, lower density chromospheric material has a smalleroutward velocity (or higher inward velocity) by 0.1 km s-1than the lower level material in the chromosphere, but the nature ofthis velocity gradient remains unknown. The FWHM of the Ca II H and Kemission lines increase with stellar luminosity, reminiscent of theWilson-Bappu effect in FGK-type stars. Both the equivalent widths andFWHM exhibit modest temporal variability in individual stars. At a givenvalue of MV, stars exhibit a spread in both the equivalentwidth and FWHM of Ca II H and K, due both to a spread in fundamentalstellar parameters, including rotation rate, age, and possiblymetallicity, and to the spread in stellar mass at a given MV.The K line is consistently wider than the H line, as expected, and itscentral absorption is more redshifted, indicating that the H and K linesform at slightly different heights in the chromosphere where thevelocities are slightly different. The equivalent width of Hαcorrelates with Ca II H and K only for stars having Ca II equivalentwidths above ~2 Å, suggesting the existence of a magneticthreshold above which the lower and upper chromospheres become thermallycoupled.Based on observations obtained at the W. M. Keck Observatory, which isoperated jointly by the University of California and the CaliforniaInstitute of Technology. Keck time has been granted by both NASA and theUniversity of California.

Calibrating M Dwarf Metallicities Using Molecular Indices
We report progress in the calibration of a method to determine cooldwarf star metallicities using molecular band strength indices. Themolecular band index to metallicity relation can be calibrated usingchemical abundances calculated from atomic-line equivalent widthmeasurements in high-resolution spectra. Building on previous work, wehave measured Fe and Ti abundances in 32 additional M and K dwarf starsto extend the range of temperature and metallicity covered. A test ofour analysis method using warm star-cool star binaries shows we cancalculate reliable abundances for stars warmer than 3500 K. We have usedabundance measurements for warmer binary or cluster companions toestimate abundances in six additional cool dwarfs. Adding stars measuredin our previous work and others from the literature provides 76 starswith Fe abundance and CaH2 and TiO5 index measurements. The CaH2molecular index is directly correlated with temperature. TiO5 depends ontemperature and metallicity. Metallicity can be estimated to within+/-0.3 dex within the bounds of our calibration, which extends fromroughly [Fe/H]=+0.05 to -1.0, with a limited extension to -1.5.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Metallicity of M dwarfs. I. A photometric calibration and the impact on the mass-luminosity relation at the bottom of the main sequence
We obtained high resolution ELODIE and CORALIE spectra for bothcomponents of 20 wide visual binaries composed of an F-, G- or K-dwarfprimary and an M-dwarf secondary. We analyse the well-understood spectraof the primaries to determine metallicities ([Fe/H]) for these 20systems, and hence for their M dwarf components. We pool thesemetallicities with determinations from the literature to obtain aprecise (±0.2 dex) photometric calibration of M dwarfmetallicities. This calibration represents a breakthrough in a fieldwhere discussions have had to remain largely qualitative, and it helpsus demonstrate that metallicity explains most of the large dispersion inthe empirical V-band mass-luminosity relation. We examine themetallicity of the two known M-dwarf planet-host stars, Gl876 (+0.02 dex) and Gl 436 (-0.03 dex), inthe context of preferential planet formation around metal-rich stars. Wefinally determine the metallicity of the 47 brightest single M dwarfs ina volume-limited sample, and compare the metallicity distributions ofsolar-type and M-dwarf stars in the solar neighbourhood.

New Low Accretion Rate Magnetic Binary Systems and their Significance for the Evolution of Cataclysmic Variables
Discoveries of two new white dwarf plus M star binaries with strikingoptical cyclotron emission features from the Sloan Digital Sky Survey(SDSS) brings to six the total number of X-ray-faint, magnetic accretionbinaries that accrete at rates M˙<~10-13Msolar yr-1, or <1% of the values normallyencountered in cataclysmic variables. This fact, coupled with donorstars that underfill their Roche lobes and very cool white dwarfs, brandthe binaries as post-common-envelope systems whose orbits have not yetdecayed to the point of Roche lobe contact. They are premagneticcataclysmic variables, or pre-Polars. The systems exhibit spin-orbitsynchronism and apparently accrete by efficient capture of the stellarwind from the secondary star, a process that has been dubbed a``magnetic siphon.'' Because of this, period evolution of the binarieswill occur solely by gravitational radiation, which is very slow forperiods >3 hr. Optical surveys for the cyclotron harmonics appear tobe the only means of discovery, so the space density of pre-Polars couldrival that of Polars, and the binaries provide an important channel ofprogenitors (in addition to the asynchronous intermediate Polars). Bothphysical and SDSS observational selection effects are identified thatmay help to explain the clumping of all six systems in a narrow range ofmagnetic field strength around 60 MG.A portion of the results presented here was obtained with the MMTObservatory, a facility operated jointly by the University of Arizonaand the Smithsonian Institution.Based in part on observations with the Apache Point Observatory 3.5 mtelescope and the Sloan Digital Sky Survey, which are owned and operatedby the Astrophysical Research Consortium (ARC).

The Cornell High-Order Adaptive Optics Survey for Brown Dwarfs in Stellar Systems. I. Observations, Data Reduction, and Detection Analyses
In this first of a two-paper sequence, we report techniques and resultsof the Cornell High-Order Adaptive Optics Survey (CHAOS) for brown dwarfcompanions. At the time of this writing, this study represents the mostsensitive published population survey of brown dwarf companions tomain-sequence stars for separations akin to our own outer solar system.The survey, conducted using the Palomar 200 inch (5 m) Hale Telescope,consists of Ks coronagraphic observations of 80 main-sequencestars out to 22 pc. At 1" separation from a typical target system, thesurvey achieves median sensitivities 10 mag fainter than the parentstar. In terms of companion mass, the survey achieves typicalsensitivities of 25MJ (1 Gyr), 50MJ (solar age),and 60MJ (10 Gyr), using the evolutionary models of Baraffeand coworkers. Using common proper motion to distinguish companions fromfield stars, we find that no systems show positive evidence of asubstellar companion (searchable separation ~1"-15" projected separation~10-155 AU at the median target distance). In the second paper of theseries we will present our Monte Carlo population simulations.

Statistical Constraints for Astrometric Binaries with Nonlinear Motion
Useful constraints on the orbits and mass ratios of astrometric binariesin the Hipparcos catalog are derived from the measured proper motiondifferences of Hipparcos and Tycho-2 (Δμ), accelerations ofproper motions (μ˙), and second derivatives of proper motions(μ̈). It is shown how, in some cases, statistical bounds can beestimated for the masses of the secondary components. Two catalogs ofastrometric binaries are generated, one of binaries with significantproper motion differences and the other of binaries with significantaccelerations of their proper motions. Mathematical relations betweenthe astrometric observables Δμ, μ˙, and μ̈ andthe orbital elements are derived in the appendices. We find a remarkabledifference between the distribution of spectral types of stars withlarge accelerations but small proper motion differences and that ofstars with large proper motion differences but insignificantaccelerations. The spectral type distribution for the former sample ofbinaries is the same as the general distribution of all stars in theHipparcos catalog, whereas the latter sample is clearly dominated bysolar-type stars, with an obvious dearth of blue stars. We point outthat the latter set includes mostly binaries with long periods (longerthan about 6 yr).

A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog)
The LSPM catalog is a comprehensive list of 61,977 stars north of theJ2000 celestial equator that have proper motions larger than 0.15"yr-1 (local-background-stars frame). The catalog has beengenerated primarily as a result of our systematic search for high propermotion stars in the Digitized Sky Surveys using our SUPERBLINK software.At brighter magnitudes, the catalog incorporates stars and data from theTycho-2 Catalogue and also, to a lesser extent, from the All-SkyCompiled Catalogue of 2.5 million stars. The LSPM catalog considerablyexpands over the old Luyten (Luyten Half-Second [LHS] and New LuytenTwo-Tenths [NLTT]) catalogs, superseding them for northern declinations.Positions are given with an accuracy of <~100 mas at the 2000.0epoch, and absolute proper motions are given with an accuracy of ~8 masyr-1. Corrections to the local-background-stars propermotions have been calculated, and absolute proper motions in theextragalactic frame are given. Whenever available, we also give opticalBT and VT magnitudes (from Tycho-2, ASCC-2.5),photographic BJ, RF, and IN magnitudes(from USNO-B1 catalog), and infrared J, H, and Ks magnitudes(from 2MASS). We also provide an estimated V magnitude and V-J color fornearly all catalog entries, useful for initial classification of thestars. The catalog is estimated to be over 99% complete at high Galacticlatitudes (|b|>15deg) and over 90% complete at lowGalactic latitudes (|b|>15deg), down to a magnitudeV=19.0, and has a limiting magnitude V=21.0. All the northern starslisted in the LHS and NLTT catalogs have been reidentified, and theirpositions, proper motions, and magnitudes reevaluated. The catalog alsolists a large number of completely new objects, which promise to expandvery significantly the census of red dwarfs, subdwarfs, and white dwarfsin the vicinity of the Sun.Based on data mining of the Digitized Sky Surveys (DSSs), developed andoperated by the Catalogs and Surveys Branch of the Space TelescopeScience Institute (STScI), Baltimore.Developed with support from the National Science Foundation (NSF), aspart of the NASA/NSF NStars program.

Contamination and exclusion in the σ Orionis young group
We present radial velocities for 38 low-mass candidate members of theσ Orionis young group. We have measured their radial velocities bycross-correlation of high-resolution (R~ 6000) AF2/Wide Field FibreOptical Spectrograph (WYFFOS) spectra of the gravity-sensitive NaIdoublet at 8183, 8195 Å. The total sample contained 117 objects,of which 54 have sufficient signal-to-noise ratio to detect NaI at anequivalent width of 3 Å however, we only detect NaI in 38 ofthese. This implies that very low-mass members of this young groupdisplay weaker NaI absorption than similarly aged objects in the UpperScorpius OB association. We develop a technique to assess membershipusing radial velocities with a range of uncertainties that does not biasthe selection when large uncertainties are present. The resultingmembership probabilities are used to assess the issue of exclusion inphotometric selections, and we find that very few members are likely tobe excluded by such techniques. We also assess the level ofcontamination in the expected pre-main-sequence region ofcolour-magnitude space brighter than I= 17. We find that contaminationby non-members in the expected pre-main-sequence region of thecolour-magnitude diagram is small. We conclude that although radialvelocity alone is insufficient to confirm membership, highsignal-to-noise ratio observations of the NaI doublet provide theopportunity to use the strength of NaI absorption in concert with radialvelocities to asses membership down to the lowest masses, where lithiumabsorption no longer distinguishes youth.

Metallicity measurements using atomic lines in M and K dwarf stars
We report the first survey of chemical abundances in M and K dwarf starsusing atomic absorption lines in high-resolution spectra. We havemeasured Fe and Ti abundances in 35 M and K dwarf stars using equivalentwidths measured from λ/Δλ~ 33000 spectra. Ouranalysis takes advantage of recent improvements in model atmospheres oflow-temperature dwarf stars. The stars have temperatures between 3300and 4700 K, with most cooler than 4100 K. They cover an iron abundancerange of -2.44 < [Fe/H] < +0.16. Our measurements show [Ti/Fe]decreasing with increasing [Fe/H], a trend similar to that measured forwarmer stars, where abundance analysis techniques have been tested morethoroughly. This study is a step towards the observational calibrationof procedures to estimate the metallicity of low-mass dwarf stars usingphotometric and low-resolution spectral indices.

The χ Factor: Determining the Strength of Activity in Low-Mass Dwarfs
We describe a new, distance-independent method for calculating themagnetic activity strength in low-mass dwarfs,LHα/Lbol. Using a well-observed sample ofnearby stars and cool standards spanning spectral type M0.5 to L0, wecompute χ, the ratio between the continuum flux near Hα andthe bolometric flux, fλ6560/fbol. Thisratio can be multiplied by the measured equivalent width of the Hαemission line to yield LHα/Lbol. We provideχ values for all objects in our sample, and also fits to χ as afunction of color and average values by spectral type. This method wasused by West et al. to examine trends in magnetic activity strength inlow-mass stars.

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

NEXXUS: A comprehensive ROSAT survey of coronal X-ray emission among nearby solar-like stars
We present a final summary of all ROSAT X-ray observations of nearbystars. All available ROSAT observations with the ROSAT PSPC, HRI and WFChave been matched with the CNS4 catalog of nearby stars and the resultsgathered in the Nearby X-ray and XUV-emitting Stars data base, availablevia www from the Home Page of the Hamburger Sternwarte at the URLhttp://www.hs.uni-hamburg.de/DE/For/Gal/Xgroup/nexxus. Newvolume-limited samples of F/G-stars (dlim = 14 pc), K-stars(dlim = 12 pc), and M-stars (dlim = 6 pc) areconstructed within which detection rates of more than 90% are obtained;only one star (GJ 1002) remains undetected in a pointed follow-upobservation. F/G-stars, K-stars and M-stars have indistinguishablesurface X-ray flux distributions, and the lower envelope of the observeddistribution at FX ≈ 104 erg/cm2/sis the X-ray flux level observed in solar coronal holes. Large amplitudevariations in X-ray flux are uncommon for solar-like stars, but maybemore common for stars near the bottom of the main sequence; a largeamplitude flare is reported for the M star LHS 288. Long term X-raylight curves are presented for α Cen A/B and Gl 86, showingvariations on time scales of weeks and demonstrating that α Cen Bis a flare star.Tables 1-3 are also available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/417/651

Target Selection for SETI. II. Tycho-2 Dwarfs, Old Open Clusters, and the Nearest 100 Stars
We present the full target list and prioritization algorithm developedfor use by the microwave search for technological signals at the SETIInstitute. We have included the Catalog of Nearby Habitable StellarSystems (HabCat, described in Paper I), all of the nearest 100 stars and14 old open clusters. This is further augmented by a subset of theTycho-2 catalog based on reduced proper motions, and this larger catalogshould routinely provide at least three target stars within the largeprimary field of view of the Allen Telescope Array. The algorithm forprioritizing objects in the full target list includes scoring based onthe subset category of each target (i.e., HabCat, cluster, Tycho-2, ornearest 100), its distance (if known), and its proximity to the Sun onthe color-magnitude diagram.

Completeness of USNO-B for High Proper Motion Stars
I test the completeness of USNO-B detections of high proper motion(μ>180 mas yr-1) stars and the accuracy of itsmeasurements by comparing them to the revised New Luyten Two-Tenthscatalog of Salim & Gould. For 14.5~20 mas yr-1) may actuallyhave still larger errors than tabulated.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Hipparcos red stars in the HpV_T2 and V I_C systems
For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997

The radii and spectra of the nearest stars
We discuss direct measurements of the radii of 36 stars located closerthan 25 parsecs to the Sun. We present the data on 307 radii and 326spectral types and luminosity classes for the nearest stars locatedinside the sphere with a radius of 10 parsecs.

Radial Velocities for 889 Late-Type Stars
We report radial velocities for 844 FGKM-type main-sequence and subgiantstars and 45 K giants, most of which had either low-precision velocitymeasurements or none at all. These velocities differ from the standardstars of Udry et al. by 0.035 km s-1 (rms) for the 26 FGKstandard stars in common. The zero point of our velocities differs fromthat of Udry et al.: =+0.053km s-1. Thus, these new velocities agree with the best knownstandard stars both in precision and zero point, to well within 0.1 kms-1. Nonetheless, both these velocities and the standardssuffer from three sources of systematic error, namely, convectiveblueshift, gravitational redshift, and spectral type mismatch of thereference spectrum. These systematic errors are here forced to be zerofor G2 V stars by using the Sun as reference, with Vesta and day sky asproxies. But for spectral types departing from solar, the systematicerrors reach 0.3 km s-1 in the F and K stars and 0.4 kms-1 in M dwarfs. Multiple spectra were obtained for all 889stars during 4 years, and 782 of them exhibit velocity scatter less than0.1 km s-1. These stars may serve as radial velocitystandards if they remain constant in velocity. We found 11 newspectroscopic binaries and report orbital parameters for them. Based onobservations obtained at the W. M. Keck Observatory, which is operatedjointly by the University of California and the California Institute ofTechnology, and on observations obtained at the Lick Observatory, whichis operated by the University of California.

Revised Coordinates and Proper Motions of the Stars in the Luyten Half-Second Catalog
We present refined coordinates and proper-motion data for the highproper-motion (HPM) stars in the Luyten Half-Second (LHS) catalog. Thepositional uncertainty in the original Luyten catalog is typicallygreater than 10" and is often greater than 30". We have used the digitalscans of the POSS I and POSS II plates to derive more accurate positionsand proper motions of the objects. Out of the 4470 candidates in the LHScatalog, 4323 objects were manually reidentified in the POSS I and POSSII scans. A small fraction of the stars were not found because of thelack of finder charts and digitized POSS II scans. The uncertainties inthe revised positions are typically ~2" but can be as high as ~8" in afew cases, which is a large improvement over the original data.Cross-correlation with the Tycho-2 and Hipparcos catalogs yielded 819candidates (with mR<~12). For these brighter sources, theposition and proper-motion data were replaced with the more accurateTycho-2/Hipparcos data. In total, we have revised proper-motionmeasurements and coordinates for 4040 stars and revised coordinates for4330 stars. The electronic version of the paper5 contains the updated information on all 4470stars in the LHS catalog.

The Palomar/MSU Nearby Star Spectroscopic Survey. III. Chromospheric Activity, M Dwarf Ages, and the Local Star Formation History
We present high-resolution echelle spectroscopy of 676 nearby M dwarfs.Our measurements include radial velocities, equivalent widths ofimportant chromospheric emission lines, and rotational velocities forrapidly rotating stars. We identify several distinct groups by theirHα properties and investigate variations in chromospheric activityamong early (M0-M2.5) and mid (M3-M6) dwarfs. Using a volume-limitedsample together with a relationship between age and chromosphericactivity, we show that the rate of star formation in the immediate solarneighborhood has been relatively constant over the last 4 Gyr. Inparticular, our results are inconsistent with recent large bursts ofstar formation. We use the correlation between Hα activity and ageas a function of color to set constraints on the properties of L and Tdwarf secondary components in binary systems. We also identify a numberof interesting stars, including rapid rotators, radial velocityvariables, and spectroscopic binaries. Observations were made at the 60inch telescope at Palomar Mountain, which is jointly owned by theCalifornia Institute of Technology and the Carnegie Institution ofWashington.

Meeting the Cool Neighbors. I. Nearby Stars in the NLTT Catalogue: Defining the Sample
We are currently undertaking a program aimed at identifying previouslyunrecognized late-type dwarfs within 20 pc of the Sun. As a first step,we have cross-referenced Luyten's NLTT proper-motion catalog against thesecond incremental release of the Two Micron All Sky Survey (2MASS)Point Source Catalog and use optical/infrared colors, derived bycombining Luyten's mr estimates with 2MASS data, to identifycandidate nearby stars. This paper describes the definition of areference sample of 1245 stars and presents a compilation of literaturedata for more than one-third of the sample. Only 274 stars havetrigonometric parallax measurements, but we have used data for nearbystars with well-determined trigonometric parallaxes to computecolor-magnitude relations in the (MV, V-K), (MV,V-I), and (MI, I-J) planes and use those relations todetermine photometric parallaxes for NLTT stars with optical photometry.Based on the 2MASS JHKs data alone, we have identified afurther 42 ultracool dwarfs (J-Ks>0.99) and useJ-Ks colors to estimate photometric parallaxes. Combiningthese various techniques, we identify 308 stars with formal distances ofless than 20 pc, while a further 46 have distance estimates within 1σ of our survey limit. Of these 354 stars, 75, including 39 of theultracool dwarfs, are new to nearby-star catalogs. Two stars with bothoptical and near-infrared photometry are potential additions to theimmediate solar neighborhood, with formal distance estimates of lessthan 10 pc.

A Near-Infrared, Wide-Field, Proper-Motion Search for Brown Dwarfs
A common proper-motion survey of M dwarf stars within 8 pc of the Sunreveals no new stellar or brown dwarf companions at wide separations(~100-1400 AU). This survey tests whether the brown dwarf ``desert''extends to large separations around M dwarf stars and further exploresthe census of the solar neighborhood. The sample includes 66 stars northof -30° and within 8 pc of the Sun. Existing first-epoch images arecompared with new J-band images of the same fields an average of 7 yrlater to reveal proper-motion companions within a ~4' radius of theprimary star. No new companions are detected to a J-band limitingmagnitude of ~16.5, corresponding to a companion mass of ~40 Jupitermasses for an assumed age of 5 Gyr at the mean distance of the objectsin the survey, 5.8 pc.

The Solar Neighborhood. VI. New Southern Nearby Stars Identified by Optical Spectroscopy
Broadband optical spectra are presented for 34 known and candidatenearby stars in the southern sky. Spectral types are determined using anew method that compares the entire spectrum with spectra of more than100 standard stars. We estimate distances to 13 candidate nearby starsusing our spectra and new or published photometry. Six of these starsare probably within 25 pc, and two are likely to be within the ResearchConsortium on Nearby Stars (RECONS) horizon of 10 pc.

Toward Spectral Classification of L and T Dwarfs: Infrared and Optical Spectroscopy and Analysis
We present 0.6-2.5 μm, R>~400 spectra of 27 cool, low-luminositystars and substellar objects. Based on these and previously publishedspectra, we develop a preliminary spectral classification system for Land T dwarfs. For late L and T types the classification system is basedentirely on four spectral indices in the 1-2.5 μm interval. Two ofthese indices are derived from water absorption bands at 1.15 and 1.4μm, the latter of which shows a smooth increase in depth through theL and T sequences and can be used to classify both spectral types. Theother two indices make use of methane absorption features in the H and Kbands, with the K-band index also applicable to mid-to-late L dwarfs.Continuum indices shortward of 1 μm used by previous authors toclassify L dwarfs are found to be useful only through mid-L subclasses.We employ the 1.5 μm water index and the 2.2 μm methane index tocomplete the L classification through L9.5 and to link the new systemwith a modified version of the 2MASS ``color-d'' index. By correlatingthe depths of the methane and water absorption features, we establish aT spectral sequence from T0 to T8, based on all four indices, that is asmooth continuation of the L sequence. We reclassify two 2MASS L8 dwarfsas L9 and L9.5 and identify one SDSS object as L9. In the proposedsystem methane absorption appears in the K band approximately at L8, twosubclasses earlier than its appearance in the H band. The L and Tspectral classes are distinguished by the absence and presence,respectively, of H-band methane absorption.

A Coronagraphic Survey for Companions of Stars within 8 Parsecs
We present the technique and results of a survey of stars within 8 pc ofthe Sun with declinations δ>-35° (J2000.00). The survey,designed to find without color bias faint companions, consists ofoptical coronagraphic images of the 1' field of view centered on eachstar and infrared direct images with a 32" field of view. The imageswere obtained through the optical Gunn r and z filters and the infraredJ and K filters. The survey achieves sensitivities up to 4 absolutemagnitudes fainter than the prototype brown dwarf, Gliese 229B. However,this sensitivity varies with the seeing conditions, the intrinsicbrightness of the star observed, and the angular distance from the star.As a result, we tabulate sensitivity limits for each star in the survey.We used the criterion of common proper motion to distinguish companionsand to determine their luminosities. In addition to the brown dwarf Gl229B, we have identified six new stellar companions of the sample stars.Since the survey began, accurate trigonometric parallax measurements formost of the stars have become available. As a result, some of the starswe originally included should no longer be included in the 8 pc sample.In addition, the 8 pc sample is incomplete at the faint end of the mainsequence, complicating our calculation of the binary fraction of browndwarfs. We assess the sensitivity of the survey to stellar companionsand to brown dwarf companions of different masses and ages.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:おおぐま座
Right ascension:11h05m28.57s
Declination:+43°31'36.4"
Apparent magnitude:8.79
Distance:4.832 parsecs
Proper motion RA:-4418
Proper motion Dec:943.3
B-T magnitude:10.687
V-T magnitude:8.947

Catalogs and designations:
Proper Names   (Edit)
TYCHO-2 2000TYC 3012-2528-1
HIPHIP 54211

→ Request more catalogs and designations from VizieR