Contents
Images
Upload your image
DSS Images Other Images
Related articles
Metallicity and absolute magnitude calibrations for UBV photometry Calibrations are presented here for metallicity ([Fe/H]) in terms of theultraviolet excess, [δ(U - B) at B - V = 0.6, hereafterδ0.6], and also for the absolute visual magnitude(MV) and its difference with respect to the Hyades(ΔMHV) in terms of δ0.6 and(B - V), making use of high-resolution spectroscopic abundances from theliterature and Hipparcos parallaxes. The relation[Fe/H]-δ0.6 has been derived for dwarf plus turn-offstars, and also for dwarf, turn-off, plus subgiant stars classifiedusing the MV-(B - V)0 plane of Fig. 11, which iscalibrated with isochrones from Bergbusch & VandenBerg (and alsoVandenBerg & Clem). The [Fe/H]-δ0.6 relations inour equations (5) and (6) agree well with those of Carney, as can beseen from Fig. 5(a). Within the uncertainties, the zero-points,+0.13(+/-0.05) of equation (5) and +0.13(+/-0.04) of equation (6), arein good agreement with the photometric ones of Cameron and of Carney,and close to the spectroscopic ones of Cayrel et al. and of Boesgaard& Friel for the Hyades open cluster. Good quantitative agreementbetween our estimated [Fe/H] abundances with those from uvby-βphotometry and spectroscopic [Fe/H]spec values demonstratesthat our equation (6) can be used in deriving quality photometric metalabundances for field stars and clusters using UBV data from variousphotometric surveys.For dwarf and turn-off stars, a new hybrid MV calibration ispresented, based on Hipparcos parallaxes withσπ/π <= 0.1 and with a dispersion of +/-0.24in MV. This hybrid MV calibration containsδ0.6 and (B - V) terms, plus higher order cross-termsof these, and is valid for the ranges of +0.37 <= (B - V)0<= +0.88,- 0.10 <= δ0.6 <= +0.29 and 3.44<= MV <= 7.23. For dwarf and turn-off stars, therelation for ΔMHV is revised and updated interms of (B - V) and δ0.6, for the ranges of -0.10<= δ0.6 <= +0.29, and +0.49 <= (B -V)0 <= +0.89, again making use of Hipparcos parallaxeswith σπ/π <= 0.1. These parallaxes formetal-poor dwarf and turn-off stars in our sample reveal that thedifference of ΔMHV(B - V) relative to Hyadesat (B - V) = +0.70 should be 1.37mag, instead of the 1.58mag given byLaird et al. In general, Hipparcos parallaxes are larger thanground-based ones, causing a divergence of ourΔMHV(B - V,δ0.6) relation(the solid line in Fig. 15b), from the one of Laird et al. (the dashedline) for the range +0.10 <= δ0.6 <= +0.29 ourabsolute magnitudes are fainter, as has been confirmed for localsubdwarfs by Reid. Our final calibrations forΔMHV(B - V, δ0.6),equations (16) and (17), are third-order polynomials inδ0.6, pass through the origin, and provide photometricdistances in reasonable agreement with those obtained directly fromHipparcos parallaxes (Fig. 18).
| Oxygen from the λ7774 High-Excitation Triplet in Open Cluster Dwarfs: Hyades Oxygen abundances have been derived from the near-IR, high-excitation OI λ7774 triplet in high-resolution, high signal-to-noise ratiospectra of 45 Hyades dwarfs using standard one-dimensional,plane-parallel LTE models. Effective temperatures of the stellar samplerange from 4319 to 6301 K, and the derived relative O abundances as afunction of Teff evince a trichotomous morphology. AtTeff>6100 K, there is evidence of an increase in the Oabundances with increasing Teff, consistent with non-LTE(NLTE) predictions. At intermediate Teff (5450K<=Teff<=6100 K), the O abundances are flat, andstar-to-star values are in good agreement, having a mean value of[O/H]=+0.25+/-0.02 however, systematic errors at the <~0.10 dex levelmight exist. The O abundances for stars with Teff<=5450 Kshow a striking increase with decreasing Teff, in starkcontrast to expectations and canonical NLTE calculations. The coolHyades triplet results are compared to those recently reported fordwarfs in the Pleiades cluster and the UMa moving group; qualitativedifferences between the trends observed in these stellar aggregatespoint to a possible age-related diminution of triplet abundance trendsin cool open cluster dwarfs. Correlations with age-related phenomena,i.e., chromospheric activity and photospheric spots, faculae, and/orplages, are investigated. No correlation with Ca II H+K chromosphericactivity indicators is observed. Multicomponent LTE ``toy'' models havebeen constructed in order to simulate photospheric temperatureinhomogeneities that could arise from the presence of starspots, and wedemonstrate that photospheric spots are a plausible source of thetriplet trends among the cool dwarfs.Based on observations obtained with the Mayall 4 m telescope at KittPeak National Observatory, a division of the National Optical AstronomyObservatory, which is operated by the Association of Universities forResearch in Astronomy, Inc., under cooperative agreement with theNational Science Foundation.This paper includes data taken with the Harlan J. Smith 2.7 m telescopeat the McDonald Observatory of the University of Texas at Austin.
| Hyades Oxygen Abundances from the λ6300 [O I] Line: The Giant-Dwarf Oxygen Discrepancy Revisited1, We present the results of our abundance analysis of Fe, Ni, and O inhigh signal-to-noise ratio, high-resolution Very Large Telescope UVESand McDonald 2dcoudé spectra of nine dwarfs and three giants inthe Hyades open cluster. The difference in Fe abundances derived from FeII and Fe I lines ([Fe II/H]-[Fe I/H]) and Ni I abundances derived frommoderately high-excitation (χ~4.20 eV) lines is found to increasewith decreasing Teff for the dwarfs. Both of these findingsare in concordance with previous results ofoverexcitation/overionization in cool young dwarfs. Oxygen abundancesare derived from the [O I] λ6300 line, with careful attentiongiven to the Ni I blend. The dwarf O abundances are in star-to-staragreement within uncertainties, but the abundances of the three coolestdwarfs (4573 K<=Teff<=4834 K) evince an increase withdecreasing Teff. Possible causes for the apparent trend areconsidered, including the effects of overdissociation of O-containingmolecules. O abundances are derived from the near-UV OH λ3167line in high-quality Keck HIRES spectra, and no such effects are found;indeed, the OH-based abundances show an increase with decreasingTeff, leaving the nature and reality of the cool dwarf [OI]-based O trend uncertain. The mean relative O abundance of the sixwarmest dwarfs (5075 K<=Teff<=5978 K) is[O/H]=+0.14+/-0.02, and we find a mean abundance of [O/H]=+0.08+/-0.02for the giants. Thus, our updated analysis of the [O I] λ6300line does not confirm the Hyades giant-dwarf oxygen discrepancyinitially reported by King & Hiltgen, suggesting that thediscrepancy was a consequence of analysis-related systematic errors. LTEoxygen abundances from the near-IR, high-excitation O I triplet are alsoderived for the giants, and the resulting abundances are approximately0.28 dex higher than those derived from the [O I] line, in agreementwith non-LTE predictions. Non-LTE corrections from the literature areapplied to the giant triplet abundances; the resulting mean abundance is[O/H]=+0.17+/-0.02, in decent concordance with the giant and dwarf [O I]abundances. Finally, Hyades giant and dwarf O abundances derived fromthe [O I] λ6300 line and high-excitation triplet, as well asdwarf O abundances derived from the near-UV OH λ3167 line, arecompared, and a mean cluster O abundance of [O/H]=+0.12+/-0.02 isachieved, which represents the best estimate of the Hyades O abundance.This paper includes data taken with the Harlan J. Smith 2.7 m and theOtto Struve 2.1 m telescopes at the McDonald Observatory of theUniversity of Texas at Austin.Some of the data presented herein were obtained at the W. M. KeckObservatory, which is operated as a scientific partnership among theCalifornia Institute of Technology, the University of California and theNational Aeronautics and Space Administration. The Observatory was madepossible by the generous financial support of the W. M. Keck Foundation.
| Chemical Homogeneity in the Hyades We present an abundance analysis of the heavy elements Zr, Ba, La, Ce,and Nd for Hyades F-K dwarfs based on high-resolution, highsignal-to-noise ratio spectra from Keck HIRES. The derived abundancesshow the stellar members to be highly uniform, although some elementsshow a small residual trend with temperature. The rms scatter for eachelement for the cluster members is as follows: Zr=0.055, Ba=0.049,Ce=0.025, La=0.025, and Nd=0.032 dex. This is consistent with themeasurement errors and implies that there is little or no intrinsicscatter among the Hyades members. Several stars thought to be nonmembersof the cluster based on their kinematics are found to deviate from thecluster mean abundances by about 2 σ. Establishing chemicalhomogeneity in open clusters is the primary requirement for theviability of chemically tagging Galactic disk stars to common formationsites in order to unravel the dissipative history of early diskformation.
| Effective temperature scale and bolometric corrections from 2MASS photometry We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.
| Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.
| A Catalog of Temperatures and Red Cousins Photometry for the Hyades Using Hyades photometry published by Mendoza and other authors,Pinsonneault et al. have recently concluded that Cousins V-I photometrypublished by Taylor & Joner is not on the Cousins system. Extensivetests of the Taylor-Joner photometry and other pertinent results aretherefore performed in this paper. It is found that in part, thePinsonneault et al. conclusion rests on (1) a systematic error inMendoza's (R-I)J photometry and (2) a small error in anapproximate Johnson-to-Cousins transformation published by Bessell. Forthe Taylor-Joner values of (V-R)C, it is found that there arepossible (though not definite) differences of several mmag with otherresults. However, the Taylor-Joner values of (R-I)C data aresupported at the 1 mmag level. Using the (R-I)C data andother published results, an (R-I)C catalog is assembled for146 Hyades stars with spectral types earlier than about K5. For singlestars with multiple contributing data, the rms errors of the catalogentries are less than 4.4 mmag. Temperatures on the Di Benedettoangular-diameter scale are also given in the catalog and are used tohelp update published analyses of high-dispersion values of [Fe/H] forthe Hyades. The best current mean Hyades value of [Fe/H] is found to be+0.103+/-0.008 dex and is essentially unchanged from its previous value.In addition to these numerical results, recommendations are made aboutimproving attitudes and practices that are pertinent to issues likethose raised by Pinsonneault et al.
| The Planet-Metallicity Correlation We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.
| Chromospheric Ca II Emission in Nearby F, G, K, and M Stars We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.
| Beryllium Abundances in F and G Dwarfs in Praesepe and Other Young Clusters from Keck HIRES Observations The study of both Be and Li gives useful clues about stellar internalstructure. Of particular interest is the study of these light elementsin open clusters, which have a known age and metallicity. In this paperwe present a study of Be abundances in 10 F-type stars in Praesepe and acomprehensive discussion about Be abundances in other open clusters:Hyades, Pleiades, α Per, Coma, and UMa. We have made observationsof the doublet of Be II around 3130 Å in Praesepe stars, using theKeck I telescope and the High Resolution Echelle Spectrometer (HIRES).Beryllium abundances were derived from the spectra using the spectrumsynthesis method. We find four stars with definite Be depletion in thetemperature range of the Li dip like we found in our previous clusterstudies, notably for the Hyades and Coma clusters. Putting all theclusters together, we confirm the existence of a Be dip in a narrowtemperature range for F stars. Beryllium depletion in this dip is lesspronounced than Li depletion. For the cooler stars there is little or noBe depletion, even though there are large depletions of Li. For starsthat have little or no Li depletion, A(Li)>=3.0, the ratio Li/Be is75+/-4.6, compared to the meteoritic ratio of 77.6. For stars coolerthan ~5900 K there appears to be little or no Be depletion, and the meanA(Be) is 1.30+/-0.02. For these cooler stars within a given clusterthere is no evidence for intrinsic star-to-star differences in A(Be),with the possible exception of the cool Pleiades stars. In thetemperature range of the Li-Be dip, a strong correlation exists betweenLi and Be, consistent with the theory of rotationally induced mixing.Moreover, the slopes of the Li versus Be correlations are differentdepending on the temperature range. For the full sample of 42 starsbetween 5900 and 6650 K the slope is 0.43+/-0.05 [where A(Li) is theabscissa]. The slope is 0.48+/-0.08 for 6300K
| Magnesium Isotope Ratios in Hyades Stars Using classical model atmospheres and an LTE analysis, Mg isotope ratios24Mg:25Mg:26Mg are measured in 32Hyades dwarfs covering effective temperatures4000K<=Teff<=5000K. We find no significant trend in anyisotope ratio versus Teff, and the mean isotope ratio is inexcellent agreement with the solar value. We determine stellarparameters and Fe abundances for 56 Hyades dwarfs covering4000K<=Teff<=6200K. For stars warmer than 4700 K, wederive a cluster mean value of [Fe/H]=0.16+/-0.02 (σ=0.1), in goodagreement with previous studies. For stars cooler than 4700 K, we findthat the abundance of Fe from ionized lines exceeds the abundance of Fefrom neutral lines. At 4700 K,[Fe/H]II-[Fe/H]I~=0.3dex, while at 4000 K[Fe/H]II-[Fe/H]I~=1.2dex. This discrepancy betweenthe Fe abundance from neutral and ionized lines likely reflectsinadequacies in the model atmospheres and the presence of non-LTE orother effects. Despite the inability of the models to reproduce theionization equilibrium for Fe, the Mg isotope ratios appear immune tothese problems and remain a powerful tool for studying Galactic chemicalevolution.Data presented here were obtained at the W. M. Keck Observatory, whichis operated as a scientific partnership among the California Instituteof Technology, the University of California, and the NationalAeronautics and Space Administration. The Observatory was made possibleby the generous financial support of the W. M. Keck Foundation.
| The Distances to Open Clusters as Derived from Main-Sequence Fitting. II. Construction of Empirically Calibrated Isochrones We continue our series of papers on open cluster distances by comparingmulticolor photometry of single stars in the Hyades with theoreticalisochrones constructed with various color-temperature relations. Afterverifying that the isochrone effective temperatures agree well withspectroscopically determined values, we argue that mismatches betweenthe photometry and the theoretical colors likely arise from systematicerrors in the color-temperature relations. We then describe a method forempirically correcting the isochrones to match the photometry anddiscuss the dependence of the isochrone luminosity on metallicity.This publication makes use of data products from the Two Micron All SkySurvey, which is a joint project of the University of Massachusetts andthe Infrared Processing and Analysis Center/California Institute ofTechnology, funded by the National Aeronautics and Space Administrationand the National Science Foundation.
| Automated analysis of stellar spectra Classical model-atmosphere analyses of stellar spectra usually begin bymeasuring equivalent widths, and then proceed into a loop in which 1)model spectra are calculated for a set of abundances and atmosphericparameters, and 2) observed and computed spectra are compared andcorrections to the abundances and parameters are inferred. Automatedtechniques have been developed to automate the measurement of equivalentwidths, and some or all parts in the analysis loop. However, in order totackle the massive datasets provided by the new spectroscopic surveyswith dedicated telescopes, it is necessary to make some radical changes.It is argued that future analyses of stellar spectra should abandon theuse of equivalent widths, and rely on tables of synthetic spectra thatcan be either interpolated extremely fast in minimum-distanceoptimization methods or used for training genetic algorithms. Examplesof ongoing projects involving high-dispersion stellar spectra for asmall sample and low-dispersion spectra for a sample of tens ofthousands of stars are described.
| Searching for Planets in the Hyades. V. Limits on Planet Detection in the Presence of Stellar Activity We present the results of a radial velocity survey of a sample of Hyadesstars and discuss the effects of stellar activity on radial velocitymeasurements. The level of radial velocity scatter due to rotationalmodulation of stellar surface features for the Hyades is in agreementwith the 1997 predictions of Saar & Donahue-the maximum radialvelocity rms of up to ~50 m s-1, with an average rms of ~16 ms-1. In this sample of 94 stars we find one new binary, twostars with linear trends indicative of binary companions, and noclose-in giant planets. We discuss the limits on extrasolar planetdetection in the Hyades and the constraints imposed on radial velocitysurveys of young stars.Some of the data presented herein were obtained at the W. M. KeckObservatory, which is operated as a scientific partnership among theCalifornia Institute of Technology, the University of California, andthe National Aeronautics and Space Administration (NASA). TheObservatory was made possible by the generous financial support of theW. M. Keck Foundation. The authors wish to recognize and acknowledge thevery significant cultural role and reverence that the summit of MaunaKea has always had within the indigenous Hawaiian community. We are mostfortunate to have the opportunity to conduct observations from thismountain. Additional data were obtained with the Hobby-Eberly Telescope,which is operated by McDonald Observatory on behalf of the University ofTexas at Austin, the Pennsylvania State University, Stanford University,Ludwig-Maximilians-Universität München, andGeorg-August-Universität Göttingen.
| The age-activity-rotation relationship in solar-type stars We present Ca II K line chromospheric fluxes measured fromhigh-resolution spectra in 35 G dwarf stars of 5 open clusters todetermine the age-activity-rotation relationship from the young Hyadesand Praesepe (0.6 Gyr) to the old M 67 (4.5 Gyr) through the twointermediate age clusters IC 4651 and NGC 3680 (1.7 Gyr). The fullamplitude of the activity index within a cluster is slightly above 60 %for all clusters but one, NGC 3680, in which only two stars wereobserved. As a comparison, the same Solar Ca II index varies by 40% during a solar cycle. Four of our clusters (Hyades and Praesepe, IC4651 and NGC 3680) are pairs of twins as far as age is concerned; theHyades have the same chromospheric-activity level as Praesepe, at oddswith early claims based on X-ray observations. Both stars in NGC 3680are indistinguishable, as far as chromospheric activity is concerned,from those in the coeval IC 4651. This is a validation of the existenceof an age-activity relationship. On the other hand, the two intermediateage clusters have the same activity level as the much older M 67 and theSun. Our data therefore shows that a dramatic decrease in chromosphericactivity takes place in solar stars between the Hyades and the IC 4651age, of about 1 Gyr. Afterwards, activity remains virtually constant formore than 3 Gyr. We have also measured v sin i for all of our stars andthe average rotational velocity shows the same trend as thechromospheric-activity index. We briefly investigate the impact of thisresult on the age determinations of field G dwarfs in the solarneighborhood; the two main conclusions are that a consistent group of``young'' stars (i.e. as active as Hyades stars) is present, and that itis virtually impossible to give accurate chromospheric ages for starsolder than 2 Gyr. The observed abrupt decline in activity explainsvery well the Vaughan-Preston gap.Observations collected at the ESO VLT. Some data presented herein wereobtained at the W. M. Keck Observatory, which is operated as ascientific partnership among the California Institute of Technology, theUniversity of California, and the National Aeronautics and SpaceAdministration. The Observatory was made possible by the generousfinancial support of the W. M. Keck Foundation.
| The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of 14 000 F and G dwarfs We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989
| A New Procedure for the Photometric Parallax Estimation We present a new procedure for photometric parallax estimation. The datafor 1236 stars provide calibrations between the absolute magnitudeoffset from the Hyades main-sequence and the ultraviolet-excess foreight different (B-V)0 colour-index intervals, (0.3 0.4),(0.4 0.5), (0.5 0.6), (0.6 0.7), (0.7 0.8), (0.8 0.9), (0.9 1.0) and(1.0 1.1). The mean difference between the original and estimatedabsolute magnitudes and the corresponding standard deviation are rathersmall, +0.0002 and +/-0.0613 mag. The procedure has been adapted to theSloan photometry by means of colour equations and applied to a set ofartificial stars with different metallicities. The comparison of theabsolute magnitudes estimated by the new procedure and the canonical oneindicates that a single colour-magnitude diagram does not supplyreliable absolute magnitudes for stars with large range of metallicity.
| Searching for Planets in the Hyades. IV. Differential Abundance Analysis of Hyades Dwarfs We present a differential abundance analysis of Hyades F-K dwarfs insearch for evidence of stellar enrichment from accretedhydrogen-deficient disk material. Metallicities and relative abundanceratios of several species have been determined. We derive a cluster mean[Fe/H]=0.13+/-0.01. Two stars show abundances ~0.2 dex larger than thecluster mean. In addition, one star, which was added by a recent studyas a cluster member, shows significantly lower abundances than thecluster mean. These three stars have questionable membershipcharacteristics. The remaining stars in the survey have an rms of 0.04dex in the differential [Fe/H] values. The Hyades cluster members haveapparently not been significantly chemically enriched. The abundanceratios of Si, Ti, Na, Mg, Ca, and Zn with respect to Fe are in theirsolar proportions.Some data presented herein were obtained at the W. M. Keck Observatory,which is operated as a scientific partnership among the CaliforniaInstitute of Technology, the University of California, and the NationalAeronautics and Space Administration. The Observatory was made possibleby the generous financial support of the W. M. Keck Foundation.
| Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731
| Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721
| What Is Happening at Spectral Type F5 in Hyades F Stars? Aiming at a better understanding of the mechanisms heating thechromospheres, transition regions, and coronae of cool stars, we studyultraviolet, low-resolution Hubble Space Telescope/Space TelescopeImaging Spectrograph spectra of Hyades main-sequence F stars. We studythe B-V dependence(s) of the chromospheric and transition layer emissionline fluxes and their dependences on rotational velocities. We find thatthe transition layer emission line fluxes and also those of strongchromospheric lines decrease steeply between B-V=0.42 and 0.45, i.e., atspectral type F5, for which the rotational velocities also decreasesteeply. The magnitude of the line-flux decrease increases for lines ofions with increasing degree of ionization. This shows that the line-fluxdecrease is not due to a change in the surface filling factor but ratherdue to a change of the relative importance of different heatingmechanisms. For early F stars with B-V<0.42 we find for thetransition layer emission lines increasing fluxes for increasing vsini,indicating magnetohydrodynamic heating. The vsini dependence isstrongest for the high-ionization lines. On the other hand, the lowchromospheric lines show no dependence on vsini, indicating acousticshock heating for these layers. This also contributes to the heating ofthe transition layers. The Mg II and Ca II lines show decreasing fluxesfor increasing vsini, as long as vsini is less than ~40 kms-1. The coronal X-ray emission also decreases for increasingvsini, except for vsini larger than ~100 km s-1. We have atpresent no explanation for this behavior. For late F stars thechromospheric lines show vsini dependences similar to those observed forearly F stars, again indicating acoustic heating for these layers. Wewere unable to determine the vsini dependence of the transition layerlines because of too few single star targets. The decrease of emissionline fluxes at the spectral type F5, with steeply decreasing vsini,indicates, however, a decreasing contribution of magnetohydrodynamicheating for the late F stars. The X-ray emission for the late F starsincreases for increasing vsini, indicating magnetohydrodynamic heatingfor the coronae of the late F stars, different from the early F stars.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Incorporated,under NASA contract NAS5-26555.
| Beryllium in the Hyades F and G Dwarfs from Keck HIRES Spectra Although there are extensive observations of Li in field stars of alltypes and in both open and (recently) globular cluster stars, there arerelatively few observations of Be. Because Be is not destroyed as easilyas Li, the abundances of Li and Be together can tell us more about theinternal physical processes in stars than either element can alone. Wehave obtained high-resolution (45,000) and high signal-to-noise ratio(typically 90 per pixel) spectra of the Be II resonance lines in 34Hyades F and G dwarfs with the Keck I telescope and HIRES. In additionwe took a spectrum of the daytime sky to use as a surrogate for thesolar spectrum so we could determine the value for Be in the Sun,analyzed in the same manner as that for the stars. We have adoptedstellar temperatures and some Li abundances for these stars from theliterature. For most of the F dwarfs we have rederived Li abundances.The Be abundances have been derived with the spectrum synthesis method.We find that Be is depleted, but detected, in the Li gap in the F starsreaching down to values of A(Be)=0.60 dex, or a factor of nearly 7 belowthe meteoritic Be abundance (a factor of 3.5 below the solar value ofChmielewski et al.). There is little or no depletion of Be in starscooler than 6000 K, in spite of the large depletions (0.5-2.5 dex) inLi. The mean value of A(Be) for the 10 coolest stars is 1.33+/-0.06, notfar from the meteoritic value of 1.42. The pattern in the Beabundances-a Be dip and undepleted Be in the cool stars-is well matchedby the predictions of slow mixing due to stellar rotation. We haveinterpolated the calculations of Deliyannis and Pinsonneault for Bedepletion due to rotational mixing to the age of the Hyades; we findexcellent agreement of the predictions with the observed Be abundancesbut less good agreement with the observed Li abundances. Some of ourHyades stars have photometrically determined rotation periods, but thereis no relation between Be and rotation period. (Generally, the lowermass stars have less Li and longer periods, which may indicate greaterspin-down and thus more Li depletion relative to Be.) The Li and Beabundances are correlated for stars in the temperature range of5850-6680 K, similar to results from earlier work on Li and Be in F andG field stars. This indicates that the depletions are not justcorrelated-the only claim that can be made for the field stars-but areprobably occurring together during main-sequence evolution. The Hyades Gdwarfs have more Be than the Sun; their initial Be may have been largeror they may not be old enough to have depleted much Be. For those Hyadesstars that seem to have little or no depletion of Li or Be, the Li/Beratio is found to be 75+/-30 the meteoritic ratio Li/Be is 78. TheHyades ratio is a representative value for the initial ratio in thematerial out of which the Hyades cluster was formed.
| Searching for Planets in the Hyades. II. Some Implications of Stellar Magnetic Activity The Hyades constitute a homogeneous sample of stars ideal forinvestigating the dependence of planet formation on the mass of thecentral star. Because of their youth, Hyades members are much morechromospherically active than stars traditionally surveyed for planetsusing high-precision radial velocity techniques. Therefore, we haveconducted a detailed investigation of whether magnetic activity of ourHyades target stars will interfere with our ability to make preciseradial velocity (vrad) searches for substellar companions. Wemeasure chromospheric activity (which we take as a proxy for magneticactivity) by computing the equivalent of the R'HKactivity index (which is corrected for photospheric contributions) fromthe Ca II K line. The value of is notconstant in the Hyades: we confirm that it decreases with increasingtemperature in the F stars and also find it decreases for stars coolerthan mid K. We examine correlations between simultaneously measuredR'HK and radial velocities using both a classicalstatistical test and a Bayesian odds ratio test. We find that there is asignificant correlation between R'HK and theradial velocity in only five of the 82 stars in this sample. Thus,simple R'HK-vrad correlations willgenerally not be effective in correcting the measured vradvalues for the effects of magnetic activity in the Hyades. We argue thatthis implies long-timescale activity variations (of order a few years;i.e., magnetic cycles or growth and decay of plage regions) will notsignificantly hinder our search for planets in the Hyades if the starsare closely monitored for chromospheric activity. The trends in theradial velocity scatter (σ'v) with, vsini, and Prot for ourstars is generally consistent with those found in field stars in theLick planet search data, with the notable exception of a shallowerdependence of σ'v on for F stars. Data presented hereinwere obtained at the W.M. Keck Observatory, which is operated as ascientific partnership among the California Institute of Technology, theUniversity of California, and the National Aeronautics and SpaceAdministration. The Observatory was made possible by the generousfinancial support of the W.M. Keck Foundation.
| HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927
| Determination of accurate stellar radial-velocity measures Wavelength measurements in stellar spectra cannot readily be interpretedas true stellar motion on the sub-km s-1 accuracy level dueto the presence of many other effects, such as gravitational redshiftand stellar convection, which also produce line shifts. Following arecommendation by the IAU, the result of an accurate spectroscopicradial-velocity observation should therefore be given as the``barycentric radial-velocity measure'', i.e. the absolute spectralshift as measured by an observer at zero gravitational potential locatedat the solar-system barycentre. Standard procedures for reducingaccurate radial-velocity observations should be reviewed to take intoaccount this recommendation. We describe a procedure to determineaccurate barycentric radial-velocity measures of bright stars, based ondigital cross-correlation of spectra obtained with the ELODIEspectrometer (Observatoire de Haute-Provence) with a synthetic templateof Fe I lines. The absolute zero point of the radial-velocity measuresis linked to the wavelength scale of the Kurucz (1984) Solar Flux Atlasvia ELODIE observations of the Moon. Results are given for the Sun and42 stars, most of them members of the Hyades and Ursa Major clusters.The median internal standard error is 27 m s-1. The externalerror is estimated at around 120 m s-1, mainly reflecting theuncertainty in the wavelength scale of the Solar Flux Atlas. For the Sunwe find a radial-velocity measure of +257+/- 11 m s-1referring to the full-disk spectrum of the selected Fe I lines. Based onobservations made at Observatoire de Haute-Provence
| Astrometric radial velocities. III. Hipparcos measurements of nearby star clusters and associations Radial motions of stars in nearby moving clusters are determined fromaccurate proper motions and trigonometric parallaxes, without any use ofspectroscopy. Assuming that cluster members share the same velocityvector (apart from a random dispersion), we apply a maximum-likelihoodmethod on astrometric data from Hipparcos to compute radial and spacevelocities (and their dispersions) in the Ursa Major, Hyades, ComaBerenices, Pleiades, and Praesepe clusters, and for theScorpius-Centaurus, alpha Persei, and ``HIP 98321'' associations. Theradial motion of the Hyades cluster is determined to within 0.4 kms-1 (standard error), and that of its individual stars towithin 0.6 km s-1. For other clusters, Hipparcos data yieldastrometric radial velocities with typical accuracies of a few kms-1. A comparison of these astrometric values withspectroscopic radial velocities in the literature shows a good generalagreement and, in the case of the best-determined Hyades cluster, alsopermits searches for subtle astrophysical differences, such as evidencefor enhanced convective blueshifts of F-dwarf spectra, and decreasedgravitational redshifts in giants. Similar comparisons for the ScorpiusOB2 complex indicate some expansion of its associations, albeit slowerthan expected from their ages. As a by-product from the radial-velocitysolutions, kinematically improved parallaxes for individual stars areobtained, enabling Hertzsprung-Russell diagrams with unprecedentedaccuracy in luminosity. For the Hyades (parallax accuracy 0.3 mas), itsmain sequence resembles a thin line, possibly with wiggles in it.Although this main sequence has underpopulated regions at certaincolours (previously suggested to be ``Böhm-Vitense gaps''), suchare not visible for other clusters, and are probably spurious. Futurespace astrometry missions carry a great potential for absoluteradial-velocity determinations, insensitive to the complexities ofstellar spectra. Based on observations by the ESA Hipparcos satellite.Extended versions of Tables \ref{tab1} and \ref{tab2} are available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.125.8) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/381/446
| Empirical calibration of the near-infrared Ca ii triplet - II. The stellar atmospheric parameters We present a homogeneous set of stellar atmospheric parameters(Teff, logg, [Fe/H]) for a sample of about 700 field andcluster stars which constitute a new stellar library in the near-IRdeveloped for stellar population synthesis in this spectral region(λ8350-9020). Having compiled the available atmospheric data inthe literature for field stars, we have found systematic deviationsbetween the atmospheric parameters from different bibliographicreferences. The Soubiran, Katz & Cayrel sample of stars with verywell determined fundamental parameters has been taken as our standardreference system, and other papers have been calibrated and bootstrappedagainst it. The obtained transformations are provided in this paper.Once most of the data sets were on the same system, final parameterswere derived by performing error weighted means. Atmospheric parametersfor cluster stars have also been revised and updated according to recentmetallicity scales and colour-temperature relations.
| A Hipparcos study of the Hyades open cluster. Improved colour-absolute magnitude and Hertzsprung-Russell diagrams Hipparcos parallaxes fix distances to individual stars in the Hyadescluster with an accuracy of ~ 6 percent. We use the Hipparcos propermotions, which have a larger relative precision than the trigonometricparallaxes, to derive ~ 3 times more precise distance estimates, byassuming that all members share the same space motion. An investigationof the available kinematic data confirms that the Hyades velocity fielddoes not contain significant structure in the form of rotation and/orshear, but is fully consistent with a common space motion plus a(one-dimensional) internal velocity dispersion of ~ 0.30 kms-1. The improved parallaxes as a set are statisticallyconsistent with the Hipparcos parallaxes. The maximum expectedsystematic error in the proper motion-based parallaxes for stars in theouter regions of the cluster (i.e., beyond ~ 2 tidal radii ~ 20 pc) isla 0.30 mas. The new parallaxes confirm that the Hipparcos measurementsare correlated on small angular scales, consistent with the limitsspecified in the Hipparcos Catalogue, though with significantly smaller``amplitudes'' than claimed by Narayanan & Gould. We use the Tycho-2long time-baseline astrometric catalogue to derive a set of independentproper motion-based parallaxes for the Hipparcos members. The newparallaxes provide a uniquely sharp view of the three-dimensionalstructure of the Hyades. The colour-absolute magnitude diagram of thecluster based on the new parallaxes shows a well-defined main sequencewith two ``gaps''/``turn-offs''. These features provide the first directobservational support of Böhm-Vitense's prediction that (the onsetof) surface convection in stars significantly affects their (B-V)colours. We present and discuss the theoretical Hertzsprung-Russelldiagram (log L versus log T_eff) for an objectively defined set of 88high-fidelity members of the cluster as well as the delta Scuti startheta 2 Tau, the giants delta 1, theta1, epsilon , and gamma Tau, and the white dwarfs V471 Tau andHD 27483 (all of which are also members). The precision with which thenew parallaxes place individual Hyades in the Hertzsprung-Russelldiagram is limited by (systematic) uncertainties related to thetransformations from observed colours and absolute magnitudes toeffective temperatures and luminosities. The new parallaxes providestringent constraints on the calibration of such transformations whencombined with detailed theoretical stellar evolutionary modelling,tailored to the chemical composition and age of the Hyades, over thelarge stellar mass range of the cluster probed by Hipparcos.
| Mining the Metal-rich Stars for Planets We examine the correlation between stellar metallicity and the presenceof short-period planets. It appears that approximately 1% of dwarf starsin the solar neighborhood harbor short-period planets characterized bynear-circular orbits and orbital periods P<20 days. However, amongthe most metal-rich stars (defined as having [Fe/H]>0.2 dex), itappears that the fraction increases to 10%. Using the Hipparcos databaseand the Hauck & Mermilliod compilation of Strömgren uvbyphotometry, we identify a sample of 206 metal-rich stars of spectraltype K, G and F which have an enhanced probability of harboringshort-period planets. Many of these stars would be excellent candidatesfor addition to radial velocity surveys. We have searched the Hipparcosepoch photometry for transiting planets within our 206 star catalog. Wefind that the quality of the Hipparcos data is not high enough to permitunambiguous transit detections. It is, however, possible to identifycandidate transit periods. We then discuss various ramifications of thestellar metallicity-planet connection. First, we show that there ispreliminary evidence for increasing metallicity with increasing stellarmass among known planet-bearing stars. This trend can be explained by ascenario in which planet-bearing stars accrete an average of 30M⊕ of rocky material after the gaseous protoplanetarydisk phase has ended. We present dynamical calculations which suggestthat a survey of metallicities of spectroscopic binary stars can be usedto understand the root cause of the stellar metallicity-planetconnection.
| Empirical calibration of the lambda 4000 Å break Empirical fitting functions, describing the behaviour of the lambda 4000Ä break, D4000, in terms of effective temperature,metallicity and surface gravity, are presented. For this purpose, thebreak has been measured in 392 stars from the Lick/IDS Library. We havefollowed a very detailed error treatment in the reduction and fittingprocedures, allowing for a reliable estimation of the breakuncertainties. This calibration can be easily incorporated into stellarpopulation models to provide accurate predictions of the break amplitudefor, relatively old, composite systems. Table 1 is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Ταύρος |
Right ascension: | 04h06m16.13s |
Declination: | +15°41'53.2" |
Apparent magnitude: | 7.839 |
Distance: | 46.707 parsecs |
Proper motion RA: | 119 |
Proper motion Dec: | -19.5 |
B-T magnitude: | 8.567 |
V-T magnitude: | 7.9 |
Catalogs and designations:
|